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SUMMARY

We performed the first proteogenomic characteriza-
tion of hepatitis B virus (HBV)-related hepatocellular
carcinoma (HCC) using paired tumor and adjacent
liver tissues from 159 patients. Integrated proteoge-
nomic analyses revealed consistency and discor-
dance among multi-omics, activation status of key
signaling pathways, and liver-specific metabolic re-
programming in HBV-related HCC. Proteomic
profiling identified three subgroups associated with
clinical and molecular attributes including patient
survival, tumor thrombus, genetic profile, and the
liver-specific proteome. These proteomic subgroups
have distinct features in metabolic reprogramming,
microenvironment dysregulation, cell proliferation,
and potential therapeutics. Two prognostic bio-
markers, PYCR2 and ADH1A, related to proteomic
subgrouping and involved in HCC metabolic reprog-
ramming, were identified. CTNNB1 and TP53 muta-
tion-associated signaling and metabolic profiles
were revealed, among which mutated CTNNB1-
associated ALDOA phosphorylation was validated
to promote glycolysis and cell proliferation. Our
study provides a valuable resource that significantly
expands the knowledge of HBV-related HCC and
may eventually benefit clinical practice.
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INTRODUCTION

Liver cancer ranks the fourth leading cause of cancer-related

death worldwide (Villanueva, 2019). Hepatocellular carcinoma

(HCC) accounts for about 85%–90% of all primary liver malig-

nancies, and the largest attributable causes are chronic infection

by hepatitis B virus (HBV) and hepatitis C virus (HCV) (Sartorius

et al., 2015), along with alcohol abuse and metabolic syndrome.

Despite the success of direct-acting antiviral therapy on curing

chronic HCV infection (Falade-Nwulia et al., 2017), current anti-

viral therapy could only reduce rather than eliminate HBV, which

is estimated to affect 292,000,000 people globally (The Polaris

Observatory Collaborators, 2018). Notably, HBV-related HCC

accounts for about 85% of HCC cases in China (Prevention of

Infection Related Cancer (PIRCA) Group, 2019), due to the

high prevalence of HBV infection. Recent next-generation

sequencing-based studies, including The Cancer Genome Atlas

(TCGA) program, have uncovered the genetic landscape of HCC

(Cancer Genome Atlas Research Network, 2017; Schulze et al.,

2015; Totoki et al., 2014), revealing driver mutations in TP53,

CTNNB1, TERT promoter, and other key gene loci. However,

how genetic alterations drive cancer phenotypes in HBV-related

HCC remains largely unknown.

Mass spectrometry (MS)-based proteomics can measure

global protein abundance and post-translational modifications

to provide additional biological insights, which may not be deci-

phered by genomic analysis alone. The combination of

sequencing and MS provides a more comprehensive picture

linking cancer ‘‘genotype’’ to ‘‘phenotype’’ through functional
ctober 3, 2019 ª 2019 The Authors. Published by Elsevier Inc. 561
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proteomics and signaling networks (Zhang et al., 2019). As a

partner of Clinical Proteomic Tumor Analysis Consortium

(CPTAC) (Ellis et al., 2013; Mertins et al., 2016; Rudnick et al.,

2016; Vasaikar et al., 2019; Zhang et al., 2014, 2016), we con-

ducted a comprehensive proteogenomic analysis of HBV-

related HCC from a Chinese cohort. Integrated analyses of

genomic, transcriptomic, proteomic, and phosphoproteomic

data from tumor and matched non-tumor liver tissues revealed

the connection and discordance among multi-omics and alter-

ations in key signaling and metabolic pathways. Proteomic

clustering resulted in three distinct subgroups, which showed

association with patient survival, personalized treatment, and

HCC-specific features. Two prognostic proteins related to meta-

bolic reprogramming (PYCR2 and ADH1A) were explored and

depicted for associated multi-omics profiles. CTNNB1 muta-

tion-associated phosphorylation sites were identified on key

metabolic enzymes including ALDOA, and the role of phospho-

ALDOA in promoting metabolic reprogramming and cell prolifer-

ation was confirmed. Collectively, our study not only provides a

high-quality proteogenomic resource of HBV-related HCC com-

plementary to TCGA but also implicates promising prognostic

and therapeutic significance and underlying regulatory mecha-

nisms that may benefit clinical practice.

RESULTS

Comprehensive Proteogenomic Characterization of
CHCC-HBV Samples
To obtain a comprehensive molecular understanding of Chinese

HCC patients with HBV infection (CHCC-HBV), paired tumor and

non-tumor liver tissues from 159 HCC patients were selected for

proteogenomic analysis based on stringent criteria (Figures S1

and S2A-S2D; Table S1). Using whole-exome sequencing

(WES) data, the tumor versus non-tumor liver comparison iden-

tified 10,235 mutated genes (about 64 genes per tumor)

including 20,369 non-silent point mutations and 1,363 small in-

sertions-deletions (Indels, Table S1). Blood samples were also

available from 108 patients. The tumor versus blood comparison

identified 14,103 somatic mutations, and 13,734 (96.6%) over-

lapped with tumor versus non-tumor comparison for the 108 pa-

tients having both non-tumor liver and blood samples

(Figure S2C).

Isobaric tandem mass tags (TMT)-based global proteomics

(Figures S2D–S2F) identified 10,783 proteins (encoded by

10,759 genes) with averagely 8,934 proteins per sample (Fig-

ure S2G). TMT-based phosphoproteomics identified 59,746

highly reliable phosphosites from 9,224 phosphoproteins with

averagely 28,401 phosphosites per sample (Figure S2H). The

MS data were of high quality as evaluated (Figures S2I–S2M).

A total of 6,494 proteins (encoded by 6,478 genes, quantified

across all 159 paired samples) and 26,418 phosphosites (quan-

tified in at least half samples) were included in subsequent ana-

lyses (Table S1).

Pairing transcriptomic and proteomic data from the 159 pa-

tients created 6,203 mRNA-protein pairs (Table S1), which

showed an overall positive correlation (median r = 0.54) with

90.3% (5,600/6,203) significant positive correlations (multiple-

test adjusted p < 0.01, Figure S3A, top panel). Consistent with
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the previous studies (Mertins et al., 2016; Zhang et al., 2014,

2016), genes involved in metabolic processes had the strongest

positive mRNA-protein correlations, while those involved in cell-

cycle and mRNA processing had weaker correlations, indicating

major post-transcriptional regulations (Figure S3A, bottom

panel). Notably, discordance between mRNA and protein abun-

dance was identified in 16 genes (NDUFS6, NDUFB9, NDUFB3,

NDUFA12, NDUFS4, NDUFB4, NDUFC2, NDUFA7, NDUFS3,

NDUFA2, NDUFB7, NDUFA13, NDUFS5, NDUFA11, NDUFB1,

and MT-ND1). The 16 genes are mainly components of respira-

tory chain complex I, suggesting that the complex formationmay

attenuate genomic/transcriptomic variation-caused protein

abundance change. Although co-expression network analysis

largely identified the same two functional modules (metabolic

pathway and tumor microenvironment) with transcriptomic and

proteomic data, respectively (Figure S3B), the protein network

increased prediction performance by above 10% compared

with corresponding mRNA network for 37.5% (60/160) of the

KEGG pathways, whereas the opposite trend was only observed

for 6.3% (10/160) of the KEGG pathways (Figure S2M). These re-

sults affirmed the high quality of our proteomic data and the

added value of proteomics for assessing gene functions.

Proteogenomic Landscape of CHCC-HBV
Among the 159 patients, five significantly mutated genes were

identified (Figure 1A), including TP53 (58%), CTNNB1 (19%),

AXIN1 (18%), KEAP1 (7%), and RB1 (6%). Mutations of AXIN1,

a negative regulator of WNT pathway, and CTNNB1 were mutu-

ally exclusive (only 2 out of 56 cases with co-mutations), consis-

tent with the previous report (Guichard et al., 2012). Mutation

frequencies were relatively higher in the CHCC-HBV cohort

than in the HBV-positive HCC subgroup from TCGA for several

genes, including AXIN1 (18% versus 8%), TSC2 (7% versus

0%), SMARCA2 (5% versus 0%), ATRX (5% versus 0%), and

KMT2C (8% versus 0%), while mutation frequencies of CTNNB1

(19% versus 35%), ARID1A (10% versus 16%), and RB1 (6%

versus 16%) were slightly lower (Figure 1B). Principal-compo-

nent analysis (PCA) further identified a significant spatial separa-

tion of samples in our cohort and TCGA HCC samples with HCV

infection but not HBV infection (Figures S4A and S4B). These re-

sults highlighted a potential impact of viral infection on the muta-

tional signatures in hepatocarcinogenesis.

Then, a patient-specific database was constructed based on

WES and RNA sequencing (RNA-seq) data (see STARMethods).

Single amino-acid variants were detected by searching tandem

mass spectrometry (MS/MS) spectra against corresponding pa-

tient-specific database. Only a few proteomic variants (1,973,

accounting for 1.75% of DNA and RNA variants) were confirmed

by MS/MS at peptide level (Figure S4C; Table S1). Most of the

peptide variants have been previously reported in dbSNP and

COSMIC (Tate et al., 2019), while only 212 were new. In addition,

0.42% of novel junctions identified by RNA-seq were sparsely

confirmed by proteomics (Figure S4D; Table S1).

Chinese herbal medicines containing aristolochic acids (AAs)

were recently reported as a contributor to oncogenesis including

HCC (Hoang et al., 2013; Kucab et al., 2019; Ng et al., 2017;

Poon et al., 2013). As estimated up to 80%of theCHCC-HBV pa-

tients may have received Chinese herbal medicines for hepatitis
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Figure 1. WES-Based Mutation Profile of the HBV-Related HCC Cohort
(A) Genetic profile and associated clinicopathologic features of all the 159 HCC patients.

(B) Comparisons of frequently mutated genes between CHCC-HBV cohort and TCGA HCC cohort (Fisher’s exact test).

(C) AA signature mutations were identified in 56 of the 159 tumors. The relative mutation frequencies of all 96 tri-nucleotide mutation patterns are plotted with

AA-like mutation patterns labeled in red.

(D) Comparisons of TMB and predicted neoantigens in tumors with and without AA signature (t test). The line and box represent median and upper and lower

quartiles, respectively.

(E) Comparisons of CD8+ T cells and immune regulatory molecules in tumors with and without AA signature (t test). The line and box represent median and upper

and lower quartiles, respectively. The y axis is in log2 scale.

See also Figures S1 and S4 and Table S1.
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Figure 2. Effects of Copy-Number Alterations on mRNA and Protein Abundance

(A) Correlations of CNA (x axes) to mRNA (left) and protein (right) expression (y axes) with CNA cis and trans effects. Significant positive (red) and negative (blue)

correlations (multiple-test adjusted p < 0.01, Spearman’s correlation) between CNA and mRNA (left) or protein (right) are indicated in top panels. The numbers of

mRNA and protein significantly associated with a particular CNA are presented as blue bars underneath the respective panels and those common to both are

represented by black bars.

(B) Scatterplot of CNA correlation tomRNA and protein (Spearman’s correlation). Each dot represents a transcript/protein. Attenuated proteins are represented in

red using a Gaussian mixture model with two mixture components.

(C) GSEA analysis of the correlation differences between CNA-mRNA and CNA-protein (attenuation enrichment). NES, normalized enrichment score.

(D) Venn diagrams of mRNAs/proteins with negative CNA-mRNA and CNA-protein correlations in chromosomes 4q and 16q.

(legend continued on next page)
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treatment (Zhang et al., 2010), WES data indeed identified a

signature for AA exposure (AA signature), dominated by A:T >

T:A transversions (Figure 1C). In total, 35.2% (56/159) of our pa-

tients harbored such AA signature (false discover rate [FDR]

<0.05) (Table S1), with mutational bias toward non-transcribed

strands (an approximate ratio of 2:1). Based on proteomic

data, three peptides derived from this signature were identified

(Figure S4E), suggesting that AA-related genomic alternations

could indeed generate mutated proteins. Since AA could lead

to DNA damage and somatic mutations, tumor mutational

burden (TMB) in AA-signature-containing tumors (n = 56, me-

dian = 3.7 mutations/Mb) was found to be 2-fold higher than

non-AA tumors (n = 103, median = 1.8 mutations/Mb) (p =

3.3E-5) (Figure 1D). Correspondingly, predicted neoantigen

counts were above 2-fold higher in AA-signature-containing tu-

mors (median = 24.5 neoantigens/tumor) than non-AA tumors

(median = 11 neoantigens/tumor) (p = 4.6E-5) (Figure 1D).

Increased TMB and neoantigen load indicated a potential benefit

from an immunotherapy-like checkpoint blockade for these pa-

tients (Samstein et al., 2019). Indeed, tumors with an AA signa-

ture harbored significantly denser infiltrating CD8+ T cells (p =

0.040), as well as higher expression of ICOS (p = 0.023), OX40

(p = 0.021), PD-L1 (p = 0.053), and LAG3 (p = 0.059) than those

without (Figure 1E). Additionally, the AA signature negatively

correlated with tumor thrombus (p = 0.002), serum albumin

(ALB) level (p = 0.019), frameshift Indels (p = 8.4E-6), and Barce-

lona Clinic Liver Cancer (BCLC) stage (p = 0.005), while it

positively correlated with splicing-site mutations (p = 0.004) (Fig-

ure S4F). However, this signature showed no significant associ-

ation with patient prognosis. Overall, HBV-related HCC with AA

signature represented a unique patient subgroup with special

clinicopathologic and molecular features.

Effects of Copy-Number Alternations
Somatic copy-number alternations (SCNAs) based onWES data

showed the most frequent gains in chromosomes 1q and 8q and

losses in chromosomes 4q, 8p, 16p, 16q, and 17p (Figures S5A–

S5C; Table S2), as previously described in HCC (Guichard et al.,

2012; Wang et al., 2013). In addition, we identified amplifications

in driver oncogenes including CCND1 (11q13.3, 17 cases),

FGF19 (11q13.3, 17 cases), and TERT (5p15.33, 31 cases) (Fig-

ure S5A) and deletions of key tumor suppressors such as AXIN1

(16p13.3, 19 cases), CDKN2A/CDKN2B (9p21.3, 19 cases), RB1

(13q14.2, 19 cases), and TP53 (17p13.1, 40 cases) (Figure S5C).

CNAs may affect mRNA, protein, and phosphoprotein abun-

dance in either ‘‘cis’’ or ‘‘trans’’ modes, corresponding to the di-

agonal and vertical patterns in Figures 2A and S5D. The cis and

trans associations between CNA-mRNA and CNA-protein were

much more consistent in HCC than in breast cancer (Mertins

et al., 2016) or colorectal cancer (Zhang et al., 2014). Quantitative

analysis revealed strong phosphoprotein-level buffering of CNA-

mRNA and CNA-protein associations. Specifically, cis associa-

tion was observed for 48%, 46%, and 30% of the genes
(E) Enrichment analysis of proteins with negative CNA-protein correlation in chro

(F and G) Heatmaps of copy-number loss of chromosomes 4q (F) and 16q (G) and

Spearman’s correlation coefficient between CNA and mRNA/protein is calculate

See also Figures S3 and S5 and Table S2.
quantified atmRNA, protein, and phosphoprotein levels, respec-

tively (Figure S5E). Comparing all the genes/proteins with both

CNA-mRNA and CNA-protein correlations as previously

described (Gonçalves et al. 2017) showed that mRNA abun-

dance better correlated with CNA changes (median Spearman’s

r = 0.33) than protein abundance (median Spearman’s r = 0.21).

As shown in Figure 2B, 1,570 proteins were significantly attenu-

ated, corresponding to 19.5% of all the 8,035 genes analyzed.

These attenuated proteins were mainly enriched in large protein

complexes, such as ribosome and spliceosome (Figure 2C).

Possibly, protein complex assembly played an important role

in post-translational modification and determining protein half-

lives, resulting in decreased correlation between gene dosage

and protein abundance.

Likewise, about 72% of the genes with CNAs exhibited signif-

icant trans effect on mRNA abundance of over 50 genes,

whereas 44% and only 28% showed similar level of trans effect

on protein and phosphoprotein abundance, respectively. The

CNAs with trans effect were centered around chromosomes

1p, 1q, 4q and 16p, and 16q. Among them, 4q and 16q were pre-

dominantly co-deleted across the cohort (FDR <1E-6, Figures

S5A–S5C), suggesting that they may co-regulate gene expres-

sion during hepatocarcinogenesis. Notably, both arms predom-

inantly anticorrelated to the global proteomic abundance than

transcriptomic abundance (Figure 2D; Table S2). Gene set

enrichment analysis (GSEA) revealed that these 4q- and 16q-

anticorrelated proteins were converged on the RNA-related

(transcription, splicing, RNA transport), cell-cycle, and ubiqui-

tin-mediated proteolysis pathways (Figure 2E). Many cell-cycle

and key signaling regulators are known to be strictly regulated

by the ubiquitin-proteasome system (UPS). We thus assumed

that loss of UPS players in the two armsmay contribute to global

protein expression change and tumorigenesis. Indeed, 4q and

16q loss showed cis effect on many UPS genes and trans effect

on cell-cycle master regulators (e.g., anaphase promoting com-

plex [APC] components), whose protein expression, but not

mRNA expression, significantly and inversely correlated with

copy numbers of 4q and 16q (Figures 2F and 2G). Altogether,

loss of 4q and 16q likely contributed to the global protein expres-

sion alteration and tumor progression via possible cis and trans

effects.

Protein Abundance-Based Clustering of CHCC-HBV
Tumors
Genomic and transcriptomic information have been used to

cluster HCC into subgroups (Chaisaingmongkol et al., 2017;

Chiang et al., 2008; Coulouarn et al., 2008; Hoshida et al.,

2009; Lachenmayer et al., 2012; Lee et al., 2004). Proteomic

data reflect gene function better than transcriptomic data

(Wang et al., 2017), as exemplified by a recent study finding

few or no overlapping genes among 30 sets of mRNA signatures

from 25 studies in HCC (Cai et al., 2017). We then performed un-

supervised clustering based on proteins differentially expressed
mosomes 4q and 16q.

the mRNA(m)/protein(p) abundance of UPS and cell-cycle-related proteins.The

d with p values displayed in log10 scale. m, mRNA; p, protein.
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between tumor and non-tumor liver (see STAR Methods) and

identified three subgroups among the 159 tumors (Figures 3A,

S6A, and S6B; Table S3). Subgroup 1 was characterized by

the highest level of metabolism-related proteins and liver func-

tion retention, such as ACAT1, ADH1A, G6PC, and PGM1 (de-

noted as metabolism subgroup, S-Mb). Subgroup 3 was

featured by the increase in proliferative proteins, such as

PARP1, TOP2A, PCNA, and MKI-67 (denoted as proliferation

subgroup, S-Pf). Subgroup 2, with an intermediate expression

of metabolic and proliferative proteins, predominantly downre-

gulated immune, inflammatory, and stromal proteins, such as

CD4, CD8A, S100A12, SPARC, and ITGB3 (denoted asmicroen-

vironment dysregulated subgroup, S-Me). Among the frequently

mutated genes, RB1 and TSC2 exhibited significant enrichment

in S-Pf and S-Me (p = 0.004 and 0.042, respectively, Fisher’s

exact test). Clinicopathologic factors such as larger tumor size

(p = 0.010), tumor thrombus (p = 2.86E-05), and advanced

TNM stages (p = 0.022) were more prominent in S-Pf versus

other two subgroups (Fisher’s exact test). CNA-based genome

instability index (CGI) significantly differed among the three sub-

groups (median 2.71, 5.19, 4.12 for S-Mb, S-Me, S-Pf respec-

tively; p = 7.34E-8, Kruskal-Wallis rank-sum test), with the

most stable in S-Mb (Figure 3A). Of note, clustering our proteo-

mic data with the transcriptomic signatures from previous

studies (Chiang et al., 2008; Coulouarn et al., 2008; Hoshida

et al., 2009; Lachenmayer et al., 2012; Lee et al., 2004) also re-

sulted in a similar 3-subgroup allocation (Figure S6C), supporting

the reliable subgrouping procedure in our study.

The proteomic subgroups significantly differed in survival (p =

9.9E-06, Figure 3B) and were authenticated as an independent

prognosticator on multivariable analysis (hazard ratio [HR],

2.041; 95% confidence interval [CI], 1.425–2.922; p = 9.8E-05)

(Table S4), after controlling for serum alpha-fetoprotein (AFP),

tumor size, tumor thrombus, BCLC, and TNM stage. Despite

that transcriptomic clustering also generated 3 subgroups with

survival difference (p = 1.4E-06; Figure S6D) and correlated

with proteomic clustering (Figure 3A), there was obvious discor-

dance of patient allocation. Comparison of these discordant pa-

tients (n = 36) showed that proteomic subgroups (HR = 2.194)

stratified these patients better than transcriptomic subgroups

(HR = 1.065), indicating the superiority of proteomic clustering

(Figure S6E). After stratifying patients according to TNM stage

(Figure 3C), proteomic subgroups still strongly correlated with

patient prognosis regardless of tumor stages, supporting the

superior prognostic power of molecular features within our pro-

teomic clustering. Clustering of TCGA HCC mRNA data with our

proteomic signature also resulted in 3 subgroups with similar

survival difference as ours (Figure 3D). Considering that tumor

thrombus is one of themost important clinicopathologic features

in HCC, we compared proteomic profiles between tumors with

or without thrombus, revealing 82 differentially expressed pro-

teins that regulated metabolic reprogramming, peroxisome,

and liver function (Figures 3E and 3F). The results further sup-

ported a crucial role for dysregulated metabolism in HCC.

For the phosphoproteomic data, a total of 859 differentially ex-

pressed phosphoproteins were identified (Table S3). Pathway-

based phosphoproteomic data also clustered tumors into three

subgroups consistent with the proteomic subgroups (Figures
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S6F and S6G), with a concordance as high as 0.41. Likewise,

the three phosphoproteomic subgroups differed in survival by

both univariable (p = 0.005, Figure S6H) and multivariable ana-

lyses (p = 0.092, Table S4).

We attempted to identify individual genes associated with the

proteomic subgroups across multi-omics data. We first

compiled 9 HCC relevant genes based on literature. As showed

in Figure S7A, AFP, PKM, RB1, SPP1 (osteopontin), CDK1, and

CHEK2 were upregulated in S-Pf versus S-Mb and S-Me, with

mRNA-protein correlation above 0.64. Contrarily, CTNNB1,

CPS1, and GLYATL1 appeared downregulated in S-Pf. Then,

focusing on clinically relevant HCC protein biomarkers, GPC3,

CD90 (THY1), and GOLM1 were found significantly upregulated,

while FUCA1 (AFU), CD44, EPCAM, and GLUL were in fact

significantly downregulated, in tumors compared to non-tumor

liver tissues, and correlated with the proteomic subgroups (Fig-

ure S7B). Drug target analysis based on drugBank (Wishart et al.,

2018) showed distinct druggable target enrichment in each pro-

teomic subgroup, indicating potential personalized therapies

(Figure S7C). Most of the druggable targets were enriched in

S-Pf and S-Me, such as proliferative or invasive regulators

including TOP1/TOP2A/TOP2B, CDK1/CDK2, and MMP14.

Meanwhile, microenvironment-associated proteins ATOX1 and

STIP1 were enriched in S-Me, and metabolic regulators

COQ8B and PLA2G2A were predominant in S-Mb. Since S-Mb

had the highest TMB (p = 0.028) and neoantigen load (p =

0.090) compared to S-Pf and S-Me (Kruskal-Wallis test; Fig-

ure 3A), such patients may benefit more from immune check-

point blockade (Samstein et al., 2019). In summary, these genes

relevant or specific to HCC significantly correlated with the pro-

teomic subgroups, further highlighting their clinical implications.

Identification and Validation of Prognostic Biomarkers
We performed supervised analysis to identify robust and repre-

sentative prognostic proteins (Figure 4A). Three upregulated

proteins and 39 downregulated proteins that mainly converged

on amino acid metabolism and oxidoreductase activity were

identified after stringent filtering (Table S5). PYCR2 (amino acid

metabolism) and ADH1A (oxidoreductase activity) were selected

and showed significantly differential expression across the pro-

teomic subgroups (Figure 4B). Stratification of patients for sur-

vival differences using median as the cutoff was significant for

PYCR2 and ADH1A, respectively (Figure 4C), which were

confirmed by multivariable analyses (PYCR2 high versus low:

HR, 1.792; 95% CI, 1.002–3.206; p = 0.049. ADH1A low versus

high: HR, 2.703; 95% CI, 1.465–5.000; p = 0.001) (Table S4). Im-

munostaining on tissue microarrays from the current cohort of

155 cases (leaving 4 cases without qualified tissue blocks) vali-

dated the relative protein abundance and prognostic value of

PYCR2 and ADH1A measured by MS/MS (Figures 4C and 4D).

In an independent cohort of 243 HCC cases (Table S6), immuno-

staining of PYCR2 and ADH1A also significantly correlated with

patient survival, further indicating their robust prognostic value

for potential clinical application (Figure 4E).

PYCR2 is a crucial enzyme in proline biosynthesis, which was

shown as the most significantly altered amino acid metabolism

bymetabolomics profiling in HCC (Tang et al., 2018). ADH1A be-

longs to the enzyme family that metabolizes a wide variety of
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Figure 3. Proteomic Stratification of HBV-Related HCC and Their Clinicopathologic Correlations

(A) Patient subgrouping based on differentially expressed proteins (n = 1,274) between tumor and non-tumor tissues. Each column represents a patient sample

and rows indicate proteins. Color of each cell shows Z-score (log2 of relative abundance scaled by proteins’ SD) of the protein in that sample.

(B) Kaplan-Meier curves for overall survival based on proteomic subgroups (log-rank test).

(C) Kaplan-Meier curves for overall survival of proteomic subgroups 1 (S-Mb) and 3 (S-Pf) at different TNM stages (stage I versus II–IV) (log-rank test).

(D) Survival difference of TCGA HCC cohort based on our proteomic subgrouping signature (log-rank test).

(E and F) The heatmap (E) and enriched pathways (F) of significantly differential expressed proteins (FDR q value < 0.05, t test) in tumors with or without tumor

thrombus.

See also Figures S6 and S7 and Tables S3 and S4.
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Figure 4. Identification and Validation of Proteomic Prognostic Biomarkers

(A) Workflow for selecting prognostic proteins with dot showing the 42 candidate proteins. FC, fold change; HR, harzad ratio.

(B) Relative abundance of PYCR2 and ADH1A between tumor and non-tumor tissues (t test) as well as across proteomic subgroups (ANOVA test). The line and

box represent median and upper and lower quartiles, respectively.

(C) Kaplan-Meier curves for overall survival based on proteomic abundance (n = 159; solid lines) or immunostaining scores (n = 155; dotted lines) of PYCR2 and

ADH1A (log-rank test).

(legend continued on next page)
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xenobiotic compounds, including alcohol, retinol, aliphatic alco-

hols, hydroxysteroids, and lipid peroxidation products, which is

a classic liver function (Molotkov et al., 2002a, 2002b). Data from

the Human Protein Atlas (https://www.proteinatlas.org/) showed

that ADH1A is largely a liver-specific protein. Thus, downregula-

tion of ADH1A may contribute to dysregulated xenobiotic meta-

bolism and facilitate HCC development.

Consistent with its prognostic value, patients with high PYCR2

were enriched in S-Me and S-Pf (p = 8.8E-08) and characterized

by harboring tumor thrombus (p = 3.3E-04), large tumor (p =

0.017), more TP53 (p = 0.002) or TSC2 (p = 4.7E-03) mutations,

and advanced TNM stages (p = 1.5E-04) (Fisher’s exact test)

(Figure 4F). Tumors with high PYCR2 showed specific downre-

gulation of pathways relevant to metabolism and peroxisome

and upregulated ones involving DNA replication, RNA transport

and mismatch repair (Figure 4F; Table S5). Similarly, patients

with high ADH1A featured fewer TP53mutations (p = 0.01), lower

AFP level (p = 7.2E-04), and absence of tumor thrombus (p =

0.024) (Fisher’s exact test) (Figure 4G). Tumors with high

ADH1A showed specific elevation in pathways involving meta-

bolism, peroxisome and liver function, and downregulation in

pathways related to spliceosome, RNA transport, DNA replica-

tion, and cell cycle (Figure 4G; Table S5). Taken together, the

two HCC-enriched prognostic biomarkers, displaying opposite

regulatory directions, were consistently associated with key clin-

icopathologic features and biological pathways.

Dissection of HBV Proteins and Liver-Specific Proteome
Since all our patients were HBV positive, we investigated the

clinical and biological relevance of HBV-related factors,

including viral proteins and HBV receptor. Large envelope pro-

tein (S), external core antigen/capsid protein (E/C), and polymer-

ase protein (P) were detected in both proteomic and RNA-seq

data, while X protein (X) was only detected in RNA-seq data (Fig-

ures 5A and 5B). Although no significant associations between

HBV proteins and patient survival were observed, there were

less abundant HBV proteins and mRNAs (except for mRNA of

protein C) in tumors than non-tumor liver tissues (Figures 5A

and 5B). We also detected significantly lower protein and

mRNA levels of HBV receptor SLC10A1 (also known as NCTP)

(Yan et al., 2012) in tumors than non-tumor liver tissues (Fig-

ure 5C). Unlike HBV proteins, its decreased expression was

significantly associated with S-Me and S-Pf (Figure 5C) as well

as reduced survival (p = 2.1E-5; Figure 5E). Immunostaining

confirmed the association between higher SLC10A1 and better

prognosis in the current cohort (p = 0.010; Figures 5D and 5E),

and in another independent HCC cohort (n = 243, p = 0.007;

Figure 5F).

Since SLC10A1 is a liver-specific protein with primary function

as a bile acid co-transporter (Hagenbuch and Meier, 1994), a

general intrinsic correlation may exist between dysregulated

bile acid metabolism and HBV-related HCC. Indeed, integrated

analysis revealed the dramatic downregulation of most key
(D) Representative multiplex immunostaining images of PYCR2 and ADH1A on t

(E) Kaplan-Meier curves for overall survival based on immunostaining scores of

(F and G) Associations of PYCR2 (F) and ADH1A (G) expression with proteomic

See also Tables S5 and S6.
proteins in bile acid metabolism (Russell, 2003), particularly in

S-Me and S-Pf (Figure 5G). The results could be explained by

the fact that bile acid metabolism and HBV transcription/replica-

tion are largely controlled by a same suite of transcriptional fac-

tors including FXR, RXR, and several others (Bar-Yishay et al.,

2011). The impaired function of such transcriptional factors

would contribute to the inhibition of bile acid metabolism and

decrease HBV gene expression simultaneously (Figure 5H), a

unique molecular feature of HBV-related HCC.

In addition, 80.3% (290/361) of the detected liver-specific pro-

teins were downregulated in tumors (Figure 5I), and most

proteins in liver-specific metabolic pathways such as gluconeo-

genesis, detoxication, and ureagenesis-ammonia were

significantly attenuated in tumors. However, key enzymes in

cholesterol metabolism (SOAT1, SOAT2, HMGCR, etc.) and

ammonia/glutamine metabolism (GLS and GLUD2) were upre-

gulated in tumors. SOAT1/SOAT2 were mainly upregulated in

S-Me and S-Pf, suggesting that synthetic metabolism of fatty

acid-cholesterol esters was enhanced in more proliferative tu-

mors (Figure 5J). GLS/GLUD2 also showed higher expression

in S-Me and S-Pf, indicating that glutamine metabolism was

possibly more active in such tumors to meet their energetic de-

mand (Figure 5J). Collectively, these data indicated a global re-

programming of liver-specific metabolism in HBV-related HCC.

Proteogenomic Analysis of Cellular Metabolic and
Signaling Pathways
To obtain a general insight into dysregulation of cellular meta-

bolic and signaling pathways, we integrated multi-omics data

across all 159 cases (Figure 6A; Table S7). Significant upregula-

tion of key enzymes of the glycolysis pathway (HK2, ALDOA,

PKM2, etc.) was observed in tumors, indicating enhanced de-

mands for glucose metabolism in HCC. However, there were

no unified alterations for the TCA cycle-oxidative phosphoryla-

tion (OX-PHOS) system within mitochondria. Increased expres-

sion and phosphorylation of enzymes such as ACLY, ACSL3,

and ACSL4 supported an overall activation of lipid biosynthesis

in HCC. Dramatic downregulation of most key enzymes in the

cholesterol-bile acid metabolic pathway was observed at tran-

scriptomic, proteomic, and phosphoproteomic levels, indicating

an impaired liver-specific metabolic function in HCC cells

(Figures 5J and 6A).

Aberrant activation of WNT, Hippo-YAP, mTOR, and trans-

forming growth factor b (TGF-b) pathways has been observed

in HCC (Giannelli et al., 2014; Perugorria et al., 2019; Sohn

et al., 2016; Villanueva et al., 2008). However, no general eleva-

tion of protein abundance or phosphorylation of WNT, Hippo-

Yap, and mTOR pathways was observed across the whole

cohort. General activation of TGF-b pathway was implied by

increased SMAD2/3 phosphorylation in tumors, which was

coherent with ADH1A downregulation, considering that TGF-b/

SMAD2/3 could directly inhibit ADH1A expression (Ciuclan

et al., 2010). Consistent with the common features found in
umor and paired non-tumor liver tissues.

PYCR2 and ADH1A in an independent HCC cohort (n = 243) (log-rank test).

subgroups, clinicopathologic factors, and multi-omics profiles.
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S-Me and S-Pf (Figure 3A), general upregulation/activation of

key cell-cycle regulators was observed in tumors (Figure 6A).

Subgroup-specific pathway enrichment analysis clearly

demonstrated distinctmolecular features among the three prote-

omic subgroups (Figure 6B). S-Mb was high in TCA cycle,

xenobiotic metabolism, fatty acid-lipid metabolism, and others,

indicating tumors in this subgroup may be driven by elevated

metabolic processes. S-Pf wasmore likely driven by proliferative

signaling includingWNT, Notch, Myc, and Hedgehog, and there-

fore S-Pf harbored the highest cell renewal pathways such as cell

cycle, transcription, splicing, and ubiquitin-proteolysis. There

were few pathways (Hippo, Circadian clock, and tight junctions)

differentially activated in S-Me, which resembled a partial

mixture of S-Mb and S-Pf with intermediate activation in certain

metabolic and signaling pathways. In keeping with Figure 3, the

results implied that HBV-related HCC included subgroups of tu-

mors driven by distinct molecular pathways, thus providing

unique therapeutic opportunities as depicted in Figure S7C.

To dig into HCC molecular features related to specific driver

mutations, association of TP53 andCTNNB1mutations with pro-

teomic and phosphoproteomic data was explored. In addition to

several metabolic pathways, proteins implicated in cell-cycle/

DNA damage repair pathways were specifically enriched in

TP53-mutated tumors (Figure 6C), supporting the classic role

of TP53 in cell-cycle regulation and guarding genome stability.

Unexpectedly, phosphorylated peptides enriched in TP53-

mutated tumors were much diversified and did not give a clear

focused pattern (Figure 6D). Proteins enriched in CTNNB1-

mutated tumors were associated with various metabolic pro-

cesses including drug metabolism, glycolysis/gluconeogenesis,

and amino acid metabolism (Figure 6E). Phosphorylation of key

metabolic enzymes including ALDOA and ENO1 was upregu-

lated in CTNNB1-mutated tumors, suggesting that their phos-

phorylation may contribute to metabolic reprogramming in

CTNNB1-mutated tumors (Figure 6F). Therefore, CTNNB1 acti-

vation may impact on metabolic reprogramming of HCC cells

at both translational and post-translational levels.

CTNNB1 Mutation-Associated ALDOA Phosphorylation
Promotes Glycolytic Metabolism and Cell Proliferation
in HCC
Although CTNNB1 mutations in HCC were reported to be related

to glycolytic metabolism (Beyo�glu et al., 2013), the exact
Figure 5. HBV Receptor and Bile Acid Metabolism Are Downregulated

(A) Expression of HBV viral proteins (E/C, n = 135; P, n = 50; S, n = 119, t test).

(B) Expression of HBV viral mRNAs (C, n = 14; E, n = 72; P, n = 155; S, n = 69; X

(C) Expression of SLC10A1 protein is decreased in tumors (t test) and associatedw

upper and lower quartiles, respectively.

(D) Kaplan-Meier curves for overall survival based on proteomic abundance (n =

(n = 155; dotted lines) (log-rank test).

(E) Representative immunostaining images of SLC10A1 expression on tumor and

(F) Kaplan-Meier curves for overall survival based on immunostaining scores of S

(G) Integrated analysis of key transcriptional factors, enzymes, and transporters in

as compared with non-tumor liver. Heatmap represents the p values of comparis

significance by log-rank test (3). The bar plot indicates the liver enrichment of thes

(H) Diagram showing the multi-omics profiles of co-regulators of HBV and bile a

(I) Differential expression of the liver-specific proteins (list from The Human Prote

(J) Heatmap and quantitative analysis of differentially expressed proteins in the liver
mechanisms remain undefined. Our proteogenomic analysis

showeddistinctmetabolic alterations in tumorswithCTNNB1mu-

tations. Specifically, ALDOA Ser36 phosphorylation was signifi-

cantly higher, despite slightly lower protein abundance of ALDOA,

in CTNNB1-mutated tumors than wild-type tumors (p = 0.015)

(Figures 6F, 7A, and 7B). Thus, ALDOA Ser36 phosphorylation

(Figure 7C) may modulate glycolytic metabolism in CTNNB1-

mutated HCC. Indeed, HepG2 cells ectopically expressing

ALDOA (ALDOA-WT or ALDOA-S36E mutant) showed more

potent glycolytic metabolism and proliferation than control cells,

with the strongest effect inALDOA-S36E-expressingcells (Figures

7D–7F), supporting aneffective role of S36phosphorylation in pro-

moting ALDOA function and cell growth. ALDOA-S36E-express-

ing cells formed larger tumors than ALDOA-WT and control cells

in xenograftmodels, further implying a strong tumor-promoting ef-

fect of ALDOA-S36 phosphorylation (Figures 7G and 7H).

We further constructed HepG2 cells expressing DN-CTNNB1

(mimicking a naturally occurring CTNNB1 mutant) and depleted

endogenous ALDOA (Figures 7I and 7J). Knockdown of ALDOA

led toamoredramatic anti-proliferation effect inDN-CTNNB1-ex-

pressing cells than in control cells (Figures 7K and 7L), indicating

the importanceofALDOAactivity forCTNNB1-mutatedHCCcells

to support their growth. Altogether, phosphorylation of glycolytic

enzymes including ALDOA may drive metabolic reprogramming

and proliferation in CTNNB1-mutated HCC (Figure 7M).

DISCUSSION

Comprehensive genomic analysis of HCC has broadened our

knowledge of the molecular events relevant to this fatal malig-

nancy (Cancer Genome Atlas Research Network, 2017; Schulze

et al., 2015; Totoki et al., 2014). Herein, global proteomic and

phosphoproteomic data provided new insights into the clinical,

biological, and therapeutic understanding of HCC. Although po-

tential heterogeneous features within each tumor samplemay be

covered by the sample preparation process, integrated proteo-

genomic characterization of paired tumor and adjacent liver

samples revealed the activation status of key signaling path-

ways, liver-specific metabolic reprogramming, clinically and

therapeutically relevant subgroups, and HBV-specific features

in HBV-related HCC.

Our integrated analysis revealed alterations of metabolic path-

ways among the most dramatic differences between tumor and
in HBV-Related HCC

, n = 153, t test).

ith proteomic subgroups (ANOVA test). The line and box representmedian and

159; solid lines) or immunostaining scores of SLC10A1 in the current cohort

paired non-tumor liver tissues.

LC10A1 in an independent HCC cohort (n = 243) (log-rank test).

bile acidmetabolism. The abundance of indicated proteins in tumor are plotted

ons between tumor/non-tumor (1), proteomic subgroups (2), and of prognostic

e proteins among all other organs based on the data from Human Protein Atlas.

cid metabolism.

in Atlas) among the three proteomic subgroups.

-specific functions. The color of each cell represents average protein abundance.
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Figure 6. Metabolism and Signaling Pathways Are Altered in HBV-Related HCC

(A) Overview ofmetabolism and signaling pathways based on integrated proteogenomic analysis. ThemRNA, protein, and phosphorylation abundance of tumors

are indicated in comparison with non-tumor liver tissues.

(legend continued on next page)
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non-tumor liver tissues. Together withmetabolic alterations, pro-

liferation and microenvironmental dysregulation stratified pa-

tients into three distinct subgroups. Surprisingly, differentially

expressed proteins in tumors with or without thrombus were

mainly cellular metabolic enzymes and regulators, indicating

that metabolic reprogramming was associated with HCC

aggressiveness. Notably, two metabolic enzymes, PYCR2 and

ADH1A, were identified and validated as potential prognostic

biomarkers. It has been reported that PYCR2 is upregulated in

various cancer types and may drive cancer growth and metas-

tasis (Ding et al., 2017; Liu et al., 2015; Sun et al., 2019). A previ-

ous study also revealed that loss of PYCR2 could lead to

oxidative-stress-triggered apoptosis and result in microcephaly

syndrome in an animal model (Nakayama et al., 2015). Therefore,

high PYCR2 expression may enable tumor cells to cope with the

excessive oxidative species derived fromenhancedmetabolism,

representing a gain of function of tumor-specific metabolism.

ADH1A is an enzyme involved in metabolizing various xenobiotic

substrates (Molotkov et al., 2002a, 2002b). Downregulation of

ADH1Amay promote the transition from liver damage to hepato-

carcinogenesis and enhance HCC progression on exposure to

xenobiotic compounds. Moreover, ADH1A-low tumors may

favor secondary metabolic pathways to promote proliferation,

as they showed specific activation in DNA replication and cell-

cycle pathways.

We found that both HBV proteins and HBV receptor

(SLC10A1) were downregulated in HCC. SLC10A1 is a functional

transporter that reabsorbs bile acid into hepatocytes. Decreased

SLC10A1 expression is consistent with the overall downregula-

tion of bile acid and liver-specific metabolism in HCC. These

phenomena could be explained by the notion that hepatocarci-

nogenesis is partially a de-differentiation from functional hepato-

cytes to tumor cells (Kullak-Ublick et al., 1997), which involves

loss of liver-specific function and metabolic reprogramming.

Consistently, different and subgroup-specific activation of

cellular metabolism and signaling pathways were observed in

our cohort, indicating that HBV-related HCC are molecularly

diversified.

So far, there is no evidence indicating that AA-signature muta-

tions could be translated and detected at the protein level. Here,

we identified 56 cases with AA signature and detected 3 mutant

peptides encoded by AA-signature gene mutations, indicating

that herbal medicine could indeed result in mutated protein

products. Considering the association of AA signature with mul-

tiple clinicopathologic and molecular features (Figure S4F), it

may have complex effects on HBV-related HCC. AA signature

was associated with high TMB and neoantigen load, which

may predict better responses to immunotherapy. Such an

assumption still needs further investigation using experimental

models or in clinical practice. Nevertheless, AA-containing herbs
(B) Integrated analysis of differentially activated metabolic and signaling pathwa

subgroups.

(C) Pathway enrichment analysis based on differentially expressed proteins that

(D) Heatmap represents protein phosphorylation sites that associated with TP53

(E) Pathway enrichment analysis based on differentially expressed proteins that

(F) Heatmap represents top protein phosphorylation sites that associated with C

See also Tables S7.
should be discouraged for clinical use, due to their HCC-promot-

ing potential.

Taken together, our current work provides a comprehensive

and integrated analysis of CHCC-HBV using multiple proteoge-

nomic platforms. We revealed that metabolic alterations are

possibly the most important factor that is associated with

advanced disease stage and poor clinical outcome. Targeting

cancer metabolism may provide a promising avenue to develop

effective therapies for HCC. Our study not only generated a high-

quality data resource that may benefit basic research but also

provided additional biological insights underlying clinical fea-

tures of HCC.
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Figure 7. ALDOA-Ser36 Phosphorylation Drives HCC Cell Glycolysis and Proliferation

(A) ALDOA-Ser36 phosphorylation was upregulated in tumors with CTNNB1 mutation (t test).

(B) Protein abundance of ALDOA was slightly lower in CTNNB1-mutated tumors (t test).

(C) Representative spectrum for peptide-containing S36 phosphorylation.

(D) HepG2 cells ectopically expressing FLAG-ALDOA-WT or FLAG-ALDOA-S36E mutants were generated and confirmed by western blot.

(E) Extracellular acidification rate (ECAR) was measured to determine glycolytic metabolism of indicated cells (two-way ANOVA followed by Tukey’s multiple

comparisons test). Data are represented as mean ± SEM, *p < 0.05; ***p < 0.001.

(F) Proliferation of indicated cells was measured by CCK8 method (two-way ANOVA followed by Tukey’s multiple comparisons test). Data are represented as

mean ± SEM, *p < 0.05; ***p < 0.001.

(G and H) Tumor growth curves (G) and xenograft tumor pictures (H) of indicated HepG2 cells subcutaneously injected into nude mice (two-way ANOVA followed

by Tukey’s multiple comparisons test). Data are represented as mean ± SEM, *p < 0.05; ***p < 0.001.

(I) HepG2 cells ectopically expressing FLAG-tag N-terminal deletion CTNNB1 (DN- CTNNB1) were generated and confirmed by western blot.

(J) Relative ALDOA mRNA levels in indicated HepG2 cells after ALDOA small interfering RNA (siRNA) transfection (t test). Data are represented as mean ± SEM.

(K) Proliferation of indicated HepG2 cells after ALDOA siRNA transfection (two-way ANOVA followed by Tukey’s multiple comparisons test). Data are represented

as mean ± SEM, *p < 0.05; ***p < 0.001.

(L) Relative cell growth inhibition rate of indicated HepG2 cells on the 3rd day after ALDOA siRNA transfection (t test). Data are represented as mean ± SEM.

(M) A brief model depicting functional impact of ALDOA phosphorylation in CTNNB1-mutated HCC cells.
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(fan.jia@zs-hospital.sh.cn).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Clinical Sample Acquisition
Paired tumor, adjacent non-tumor liver tissues and blood samples from a cohort of 316 HBV-related HCC patients were initially

enrolled for the current Clinical Proteomic Tumor Analysis Consortium (CPTAC) project (designated as CHCC-HBV patients). All

the patients underwent primary curative resection from June 2010 to December 2014 at Zhongshan Hospital and received no prior

anticancer treatments. Tissue samples were collected within 30 min after operation and snap-frozen in liquid nitrogen. Peripheral

blood samples were collected the day before surgery. Postoperative surveillance and treatment were conducted according to our

consensus guideline as described previously (Xie et al., 2017; Zhou et al., 2018). Tumor differentiation was graded according to

the Edmondson system. Overall survival (OS) was defined as the interval between surgery and death. The study was approved by

the Research Ethics Committee of Zhongshan Hospital, and written informed consent was obtained from each patient.
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Cell Line
HepG2 cells were a kind gift from Prof. Lei Zhang (Shanghai Institute of Biochemistry and Cell Biology, China). HepG2 cells were

cultured in DMEM with 10% FBS, 100 units of penicillin and 100 mg/mL streptomycin.

METHOD DETAILS

Proteogenomic Workflow
The proteogenomic analysis of the samples was performed according to the following procedures (Figure S1). For tumor cellularity

analysis, themiddle section of each tissue block (< 10mm) was resected and subjected to hematoxylin and eosin (H&E) staining. The

histological assessment of all tumor samples was accomplished by two experienced pathologists separately. To reduce the impact

of intra-tumor heterogeneity onmulti-omics analysis, the remaining liver tissue was pulverized using the CryoPrepTMCP02 (Covaris)

and then divided into three parts. For each case, �30 mg tissue sample was used for DNA extraction and whole exome sequencing

(WES);�200mg tissue sample was immediately transferred into a 1.5mL EP tube and then added 1mLRNAlater reagent (Invitrogen)

for RNA sequencing (RNA-seq); �200 mg tissue sample was lysed with SDS lysis buffer (4% SDS, 100 mM Tris-HCl, 0.1 M DTT,

pH 7.6) and kept in �80�C for the following proteomic and phosphoproteomic analyses.

According to CPTAC clinical sample collection procedures, the following criteria were used for sample selection on the 316 paired

samples, 1) successful extraction of DNA from both tumor and adjacent non-tumor liver tissues for WES (159 pairs); 2) qualified RNA

from both tumor and adjacent non-tumor liver tissues for RNA-seq (165 pairs); 3) qualified protein extraction from both tumor and

adjacent non-tumor liver tissues as revealed from the SDS-PAGE image without obvious protein degradation and aberrant pattern

(165 pairs for proteomic/phosphoproteomic analysis); 4) no tumor cells were observed in the adjacent non-tumor liver tissues. Finally,

159 high-quality paired samples were selected for the integrative proteogenomic analysis, and the average tumor cellularity of these

samples was 81% (±14%SD, Table S1). Themedian age of these patients was 54, with 128males and 31 females. In total, 91, 14 and

54 patients were classified as TNM stages I, II and III-IVA respectively. Detailed clinicopathologic features were summarized in Table

S1. Among them, qualified blood samples from 108 patients were also available and used for WES as germline genomic reference.

DNA/RNA Extraction, WES and RNA-seq
Genomic DNAwas extracted from tumor and non-tumor liver tissues using QIAamp Fast DNA tissue kit (QIAGEN) according to man-

ufacturer’s protocol. Matched blood DNAwas extracted using the QIAamp DNA bloodMidi Kit (QIAGEN). DNA was quantified by the

Qubit 3.0 (Invitrogen) and NanoDrop 2000 (Thermo Scientific) and the integrity was assessed by TapeStation (Agilent Technologies).

WES libraries were prepared and captured using the SureSelect Human All Exon V6 kit (Agilent Technologies) following manufac-

turer’s instructions. The DNA library with 150 bp paired-end reads was sequenced with Illumina HiSeq X Ten system. WES was

conducted with a mean coverage depths of 187X (range: 108-344X) for tumor samples and 191X (range: 128-356X) for adjacent

non-tumor liver samples (Figure S2A), consistent with the recommendations for WES (Clark et al., 2011; Sims et al., 2014).

Total RNAwas extracted and purified from fresh frozen tissues using the Trizol reagent (Invitrogen). RNA integrity wasmeasured on

an Agilent 2100 Bioanalyzer (Agilent Technologies). Paired samples with high RNA integrity (RNA integrity number > 5), no contam-

inants and enough amount of RNAwere used to prepare the transcriptome library. RNAwas isolated using Sera-Mag oligo (dT) beads

(Thermo Scientific) and fragmented with a NEB Fragmentation Reagents kit (NEB). The cDNA synthesis, end-repair, A-base addition,

and ligation of the Illumina index adapters were performed according to Illumina’s TruSeq RNA protocol (Illumina). Library quality was

measured on an Agilent 2100 Bioanalyzer for product size and concentration. Paired-end libraries were sequenced by an Illumina

HiSeq X Ten (23 150-nucleotide read length), with a sequence coverage of 40 million paired reads. For each tumor and its adjacent

non-tumor sample, RNA-seq resulted in an average of 40.1M and 39.1Mhigh-quality reads, respectively (Figure S2B). RNA-seq data

analysis identified 19,860 protein-coding genes with an average of 18,839 genes per sample, covering the majority of all the genes in

proteomic identification.

Peptides preparation for MS analysis
Protein Extraction and Digestion

For protein extraction, the SDS lysis buffer was added into the powdered tissues, and sonicated at 15% amplitude for 5 s on and 5 s

off with the total working time of 2 min (JY92-IIDN, Ningblio Scientz Biotechnology Co., LTD, China). The proteins were then dena-

tured and reduced at 95�C for 5 min. The insoluble debris was removed by centrifugation at 12,000 g for 10 min and the supernatant

was retained for proteomic experiment. The protein concentration was determined using tryptophan-based fluorescence quantifica-

tion method (Thakur et al., 2011).

Filter-aided sample preparation (FASP) procedure was used for protein digestion (Wi�sniewski et al., 2009). Briefly, proteins were

loaded in 10 kDa centrifugal filter tubes (Millipore), washed twice with 200 mL UA buffer (8 M urea in 0.1 M Tris-HCl, pH 8.5), alkylated

with 50 mM iodoacetamide in 200 mL UA buffer for 30 min in the darkness, washed thrice with 100 mL UA buffer again and finally

washed thrice with 100 mL 50 mM triethyl ammonium bicarbonate (TEAB). All above steps were centrifuged at 12,000 g at 25�C. Pro-
teins were digested at 37�C for 18 hr with trypsin (Promega) at a concentration of 1:50 (w/w) in 50mMTEAB. After digestion, peptides

were eluted by centrifugation. The peptide concentration was determined by BCA protein quantification kit. For each sample, 400 mg

peptides were prepared by vacuum centrifugation dryness for the following TMT labeling experiment.
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For the ‘‘internal reference’’ mixed sample used in TMT labeling, 50 pairs of tumor and adjacent non-tumor liver samples were

randomly selected and mixed in equal protein amount. The peptides of mixed samples were also prepared by FASP and divided

into 400 mg per EP tube for each set of TMT labeling experiment as the internal reference.

TMT 11-plex Labeling

The isobaric labeling experiment was conducted according to the TMT kit instructions. For each set of TMT 11-plex labeling exper-

iment, each channel was labeled with 400 mg peptides. The mixed peptides were labeled with channel 126 as the internal reference,

and five pairs of tumor and adjacent non-tumor liver samples were labeled with the other ten channels (Tumor labeled with 127N,

128N, 129N, 130N and 131N; adjacent non-tumor liver tissue labeled with 127C, 128C, 129C, 130C and 131C). Two sets of TMT re-

agents (0.8 mg) were dissolved in anhydrous acetonitrile (41 mL 3 2) and added to 400 mg peptides (dissolved in 200 mL 100 mM

TEAB) to achieve a final acetonitrile concentration of approximately 30% (v/v). Following incubation for 1 hr at room temperature,

16 mL 5% hydroxylamine was added to the samples and incubated for 15 min to quench the labeling reaction. The labeled peptides

were pooled and then subjected to vacuum centrifugation dryness and C18 solid-phase extraction desalting (3M Empore). The 165

pairs of tumor and adjacent non-tumor liver tissue samples were eventually labeled in 33 sets of TMT 11-plex experiments for the

nanoLC-MS/MS analysis.

High-pH RPLC Fractionation

To increase the depth of protein identification, high-pH reverse phase liquid chromatography was used for peptide fractionation. A

total of 4.4 mg TMT 11-plex labeled peptides were fractionated using a Waters XBridge BEH300 C18 column (250 3 4.6 mm, OD

5 mm) at a flow rate of 0.7 mL/min on Agilent 1100 LC instrument. Solvent A (10 mM NH4COOH, adjusted to pH 10.0 with NH3,H2O)

and a nonlinear increasing concentration of solvent B (90% ACN, 10 mM NH4COOH, adjusted to pH 10.0 with NH3,H2O) were used

for peptide separation. A 110-min gradient was set as follows, 1%–5%B in 2min; 5%–25%B in 35min; 25%–40%B in 43min; 40%–

55% B in 6 min; 55%–95% B in 3 min; 95% B for 4 min; 95%–1% B in 1 min; 1% B for 16 min. The eluate was collected every 1 min

into 96 fractions from 3 min to 99 min. The 96 fractions were combined by a concatenation strategy into 48 fractions (1&49,

2&50.48&96). 5% of the 48 fractions were taken out and dried by vacuum centrifugation for proteome analysis. The other 95%

of the 48 fractions were further combined into 24 fractions for phosphopeptide enrichment and phosphoproteome analysis.

Phosphopeptide Enrichment

The phosphopeptide enrichment was performed using High-Select Fe-NTA kit (Thermo Scientific, A32992) according to the kit in-

structions with minor modifications. Briefly, the 24 fractions were dissolved with 200 mL loading buffer (80% ACN, 0.1% TFA). The

resins of one spin column in the kit were divided into 24 equal parts andmixed with each peptide fractions. The peptide-resin mixture

was incubated for 15 min at room temperature and then transferred into the filter tip (Axygen, TF-20-L-R-S). The supernatant was

removed after centrifugation. Then the resins adsorbed with phosphopeptides were washed sequentially with 200 mL 3 3 washing

buffer (80% ACN, 0.1% TFA) and 200 mL3 3 H2O to remove nonspecifically adsorbed peptides. The phosphopeptides were eluted

off the resins by 100 mL 3 2 elution buffer (50% ACN, 5% NH3,H2O). All centrifugation steps above were conducted at 50 g. The

eluates were collected for speed-vac and dried for mass spectrometry analysis.

Benchmark Sample Preparation

The benchmark samples were prepared for longitudinal quality control of mass spectrometry performance (Figures S2E and S2F).

Five pairs of hepatobiliary carcinoma tissue and their adjacent non-tumor liver samples were used for protein extraction and diges-

tion, TMT 10-plex labeling (tumor tissues labeledwith 126, 127C, 128C, 129C and 130C; adjacent non-tumor liver tissues labeledwith

127N, 128N, 129N, 130N and 131) and peptide fractionation (24 fractions). The benchmark samples (�1 mg each fraction) were

analyzed before every four sets of HCC proteomic samples on a Q Exactive HFmass spectrometer. The diluted benchmark samples

(�100 ng each fraction) were analyzed before every four sets of HCC phosphoproteomic samples on an Orbitrap Fusion mass

spectrometer.

Nano-LC-MS/MS
Proteomic Analysis

For proteomic analysis, the fractionated peptides (�1 mg each fraction) were resolved using 0.1% formic acid and a quarter of each

fractionwas separated using a home-mademicro-tip C18 column (75 mm3 200mm) packedwith ReproSil-Pur C18-AQ, 3.0 mm resin

(Dr. Maisch GmbH, Germany) on a nanoflow HPLC Easy-nLC 1000 system (Thermo Fisher Scientific), using a 70 min LC gradient at

300 nL/min. Buffer A consisted of 0.1% (v/v) formic acid in H2O and Buffer B consisted of 0.1% (v/v) formic acid in acetonitrile. The

gradient was set as follows: 2%–5% B in 1 min; 5%–27% B in 53 min; 27%–40% B in 10 min; 40%–90% B in 2 min; 90% B in 4 min.

Proteomic analyses were performed on a Q Exactive HF mass spectrometer (Thermo Fisher Scientific). The spray voltage was set at

2,500 V in positive ion mode and the ion transfer tube temperature was set at 275�C. Data-dependent acquisition was performed

using Xcalibur software in profile spectrum data type. The MS1 full scan was set at a resolution of 120,000 @ m/z 200, AGC target

3e6 and maximum IT 50 ms by orbitrap mass analyzer (350-1700 m/z), followed by ‘top 15’ MS2 scans generated by HCD fragmen-

tation at a resolution of 60,000 @ m/z 200, AGC target 1e5 and maximum IT 120 ms. The fixed first mass of MS2 spectrum was set

105.0 m/z. Isolation window was set at 1.0 m/z. The normalized collision energy (NCE) was set at NCE 32%, and the dynamic exclu-

sion timewas 30 s. Precursors with charge 1, 7, 8 and > 8were excluded forMS2 analysis. The 24 benchmark fractionswere analyzed

using a 90 min LC gradient. The gradient was set as follows: 2%–5% B in 1 min; 5%–25% B in 67 min; 25%–40% B in 13 min; 40%–

60% B in 3 min; 60%–90% in 1 min; 90% B in 5 min. MS parameters were set the same as HCC proteomic samples.
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Phosphoproteomic Analysis

For phosphoproteomic analysis, the enriched phosphopeptides were resolved using 0.1% formic acid and half of each fraction was

loaded for LC separation on a nanoflow HPLC Easy-nLC 1200 system (Thermo Fisher Scientific), using a 70 min LC gradient at

300 nL/min. The RP chromatographic column was the same as above. Buffer A consisted of 0.1% (v/v) formic acid in H2O and Buffer

B consisted of 0.1% (v/v) formic acid in 80%acetonitrile. The gradient was set as followings: 5%–8%B in 4min; 8%–30%B in 46min;

30%–44% B in 10 min; 44%–100% B in 3 min; 100% B in 7 min. Enriched phosphopeptides were analyzed on an Orbitrap Fusion

mass spectrometer (Thermo Fisher Scientific). The spray voltage was set at 2,500V in positive ion mode and the ion transfer tube

temperature was set at 275�C. Data-dependent acquisition was performed using Xcalibur software in profile spectrum data type.

The MS1 full scan was set at a resolution of 120,000 @ m/z 200, RF lens 60%, AGC target 4e5 and maximum IT 50 ms by orbitrap

mass analyzer (350-1500 m/z), followed by top-speed MS2 scans generated by HCD fragmentation at a resolution of 50,000 @

m/z 200, AGC target 1e5, inject ions for all available parallelizable time and maximum IT 100 ms in a 3 s cycle time. The fixed first

mass of MS2 spectrum was set 105.0 m/z. Isolation window was set at 1.2 m/z. The HCD collision energy was set at 38%, and

the dynamic exclusion time was 30 s. Precursors with charge state 2-6 were selected for MS2 analysis. The 24 benchmark fractions

were analyzed using a 70min LC gradient. The gradient was set as followings: 5%–8%B in 4min; 8%–35%B in 46min; 35%–50%B

in 10 min; 50%–100% B in 2 min; 100% B in 8 min. MS parameters were set the same as HCC phosphoproteomic samples.

Database Searching of MS Data
All mass spectrometric data were analyzed using MaxQuant 1.6.1.0 against the human Swiss-Prot database containing 20,231 se-

quences (downloaded in December, 2017) plus 269 Swiss-Prot HBV protein sequences (Tyanova et al., 2016). TMT 11-plex (HCC

and liver samples) or TMT 10-plex (Benchmark samples)-basedMS2 reporter ion quantification was chosen with reporter mass toler-

ance set at 0.003 Da. The PIF (precursor intensity fraction) filter value was set at 0.5 to reduce the interference of precursor co-frag-

mentation. Carbamidomethyl cysteine was searched as a fixed modification. Oxidized methionine, protein N-term acetylation, lysine

acetylation, asparagine and glutamine (NQ) deamidation were set as variable modifications. In HCC phosphorylation data analysis,

phospho (STY) was also chosen as a variable modification. Amaximum number of 5 modifications per peptide were allowed for each

peptide. Enzyme specificity was set as trypsin. The maximum missing cleavage site was set as 2. The tolerances of first search and

main search for peptides were set at 20 ppm and 4.5 ppm, respectively. The minimal peptide length was set at 7. The false discovery

rates (FDR) of peptide, protein and site were all < 0.01. For each set of TMT labeling data, the purities of TMT labeling channels were

corrected according to the kit LOT number. The Class I (a localization probability filter > 0.75) phosphorylation sites were considered

as highly reliable sites.

WES Data Analysis
Somatic Mutation Calling and Filtering

WES sequencing reads after exclusion of low-quality reads were mapped to the UCSC hg19 reference sequence with BWA (version

0.7.15, http://bio-bwa.sourceforge.net/) (Li and Durbin, 2009). PCR duplicates were removed by Picard (version 2.0.1, http://

broadinstitute.github.io/picard/), and recalibrated by the BaseRecalibrator tool from GATK (version 4.0.6.0, https://software.

broadinstitute.org/gatk/). Somatic variants were detected using Mutect (version 2) on exome data of tumor and matched non-tumor

pairs. Annotation of variants was performed by Annovar (version 2017 Jul 17, http://annovar.openbioinformatics.org/en/latest/)

(Wang et al., 2010) on Refseq genemodels (version 2017/06/01). Germline variants were filtered from database of the 1000 Genomes

(Auton et al., 2015), NHLBI Exome Sequencing Project (ESP6500), Exome Aggregation Consortium (EXAC), and Genome Aggrega-

tion Database (gnomAD). A stringent downstream filter comprised of the following criteria was used to obtain high quality somatic

variants: a minimum of 8X coverage; Variant Allele Fraction (VAF)R 5% and at least 5 variant supporting reads in the tumor sample,

and VAF < 1% in the non-tumor sample; strand bias % 0.95; After that, mutations in the non-coding regions (30UTR, 50UTR, Intron,
gene intergenic etc.) were removed. This finally resulted in 20,369 non-silent somatic SNV calls and 1,363 indel calls in total for tumor

samples in comparison to matched non-tumor liver samples (159 pairs).

Analysis of Significantly Mutated Genes

The filtered mutations (including SNV and indel) were further used to identify significantly mutated genes by MutSigCV (https://

software.broadinstitute.org/cancer/cga/mutsig, version 1.4) with default parameters. The final MutSigCV P values were converted

to q-values with the method of Benjamini and Hochberg (Lawrence et al., 2013), and genes with q% 0.1 were declared to be signif-

icantly mutated.

Mutual Exclusivity Analysis of Mutations

To detect mutual exclusivity of significantly mutated genes in our mutational dataset, Fisher’s exact test was used to detect mutually

exclusively mutated genes.

Germline Variants Calling and Filtering

Germline variants were identified using the HaplotypeCaller tool fromGATK (version 4.0.6.0) with the genotyping_mode DISCOVERY

-stand_call_conf 30; post-processing filter was performed by QD < 2.0, FS > 60.0, MQ < 40.0, MappingQualityRankSum < �12.5,

ReadPosRankSum < �8.0 as the GATK best practice recommended.
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Comparisons of Frequently Mutated Genes between CHCC-HBV and TCGA cohort

The somatic MAF data called byMutect from TheCancer Genome Atlas Liver Hepatocellular Carcinoma (TCGA-LIHC) were obtained

from the GDC database (http://gdac.broadinstitute.org), and HBV infection status was retrieved from TCGA HCC paper (Cancer

Genome Atlas Research Network, 2017). The most frequently mutated genes within CHCC-HBV cohort and TCGA cohort were

compared (Figure 1B).

Mutational Signature Analysis

Mutation signatures were jointly inferred for 159 tumors with the software of Mutational Signatures in Cancer (MuSiCa) (Dı́az-Gay

et al., 2018). The 96 mutational vectors (or contexts) generated by somatic SNVs based on six base substitutions (C > A, C > G,

C > T, T > A, T > C, and T > G) within 16 possible combinations of neighboring bases for each substitution were used as input

data to infer their contributions to observed mutations. MuSiCa using non-negative matrix factorization (NMF) approach was imple-

mented to decipher the 96 3 159 (i.e., mutational context-by-sample) matrix by 30 known COSMIC cancer signatures (https://

cancer.sanger.ac.uk/cosmic/signatures) and infer their exposure contributions. Moreover, the frequencies of substitutions in 96

possible mutation types of CHCC-HBV and TCGA-HBV cohorts as well as CHCC-HBV and TCGA-HCV cohorts were compared

by PCA analysis with sklearn PCA and visualized in 3-demension by matplotlib of Python v2.7 (Figures S4A and S4B). Wilks’ l

test was used to assess the significance of the mean vector differences in different cohorts.

Aristolochic Acid (AA) Signature Analysis in HCC

Mutational signature activity (mSigAct, version 0.9) (Ng et al., 2017) was applied to assess presence of the aristolochic acid (AA)

signature in 159 tumor samples. The mSigAct software provided a signature presence test to infer whether the observed mutation

spectrum could be better explained with a contribution from the AA mutational signature (COSMIC signature 22) than without it and

compared them with a likelihood ratio test. The null hypothesis was that the mutational counts were generated without the AA signa-

ture and the alternative hypothesis was that they were from the AA signature. The test was then carried out by a standard likelihood

ratio test on these two hypotheses. The mSigAct revealed strong evidence of AA exposure with FDR < 0.05.

Tumor Mutational Burden (TMB)

TMBwas defined as the number of somatic mutations (including base substitutions and indels) in the coding region. To reduce sam-

pling noise, synonymous alterations were also counted (Chalmers et al., 2017). In order to calculate the TMB, the total number of

mutations counted was divided by the size of the coding sequence region of the Agilent SureSelect Human All Exon V6.

Neoantigen Prediction

For neoantigen prediction, HLA class I types (HLA-A, HLA-B, HLA-C) for each sample were identified using OptiType (version 1.2.1)

(Szolek et al., 2014). NetMHCpan (version 3.0) (Nielsen and Andreatta, 2016) was applied to predict the binding affinity of peptides

and identify MHC ligands. Predicted binding affinity parameters > 1,000 nMwere considered as weak binding, and those with strong

binding affinity (IC50 % 500 nM) were enrolled as predicted neoantigen.

The association analysis of AA signature with immune signatures

The abundance of CD8+ T cells was inferred by xCell webtool (Aran et al., 2017). P values for signature distribution between AA and

non-AA cohorts were calculated using t test.

Exome-Based Somatic Copy Number Alteration (SCNA) Analysis

For each tumor, SCNAs were inferred by CNVkit (version 0.9.5, https://cnvkit.readthedocs.io/en/stable/pipeline.html) (Talevich et al.,

2016) using Circular Binary Segmentation algorithm with default parameters. Segment-level ratios were calculated and log2 trans-

formed. Significant focal SCNAs across all samples were identified by Genomic Identification of Significant Targets in Cancer

(GISTIC, version 2.0) (Mermel et al., 2011) to determine which SCNA regions were significantly gained or lost than expected by

chance with q value % 0.1. Based on the published literature (Bambury et al., 2015), a log2 ratio cut-off of ± 0.8 was used to define

SCNA amplification and deletion. To further summarize the arm-level copy number change (i.e., chromosomal instability), we used a

weighted sum approach (Vasaikar et al., 2019), in which the segment-level log2 copy ratios for all the segments located in the given

arm were added up with the length of each segment being weighted.

RNA-seq Data analysis
RNA-seq data analysis with RSEM

After removal of adaptor contamination, polyA and polyC, sequencing reads were aligned using STAR2 (version 2.4.2a) (Dobin et al.,

2013) to human reference sequence (UCSC hg19 assembly). Gene expression values were quantitated with RSEM (version 1.3.0) (Li

and Dewey, 2011) against the GENCODE (version 19) (https://www.gencodegenes.org) transcript models, and then were normalized

within each sample to upper quartile. The RNA-seq experiments were performed in 4 batches due to the 4 different sample delivery

times. The batch effect of RNA data was evaluated by PCA and corrected with ComBat in SVA (R package, https://cran.r-project.org/

web/packages/COMBAT/index.html). Finally, the log2 transformed upper-quartile normalized RSEM counts were used for the

following analysis. RNA-seq data of four non-tumor liver samples (ID numbers: N127, N431, N777 and N813) were excluded in

the subsequent analysis because they didn’t pass the sample gender check and tumor/normal status check procedures.

RNA-seq Variant Calling

For RNA-seq variant calling, QC passed data were realigned using STAR2 (version 2.4.2a, https://github.com/alexdobin/STAR) in

two-pass mode. Pre-processing steps of deduplication, splitting reads into exon segments, hard-clipping any sequences over-

hanging into intronic regions as well as local realignment and recalibration were performed. Variants calling was implemented by
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‘HaplotypeCaller’ mode with parameters of –genotyping_mode DISCOVERY -recoverDanglingHeads -dontUseSoftClippedBases

–dbsnp dbsnp_137.hg19.vcf. -stand_emit_conf 20). Highly accurate variants were filtered by applying ‘VariantFiltration’ (with param-

eters: -window 35 -cluster 3 -filterName FS –filter ‘‘FS >30.0’’ -filterNameQD -filter ‘‘QD <2.0’’) and filtered with depthsR 6 and allelic

depths for the alt alleles R 3.

Proteome and Phosphoproteome Data Analysis
Data Normalization

Data were normalized using the median centering method across total proteins or phosphorylation sites to correct sample loading

differences. In normalized samples, these proteins or phosphorylation sites should have a log TMT ratio value centered at zero.

Normalized Proteins/phosphorylation sites with SwissProt ID were converted to Human Genome Nomenclature Committee’s

HUGO symbols provided by HGNC (https://www.genenames.org).

Missing Value Imputation

K-nearest neighbor (k-NN) imputation was applied to impute themissing values. Before missing value imputation, proteins and phos-

phorylation sites havingmore than 50%missing data were excluded to ensure that each sample had enough data for imputation. The

imputation method was implemented in the pamr package in R.

Batch effect and data quality analysis for proteomic data

The batch effect due to TMTmultiplexes was assessed by performed performing unsupervised PCA on the proteomic data. The lead-

ing PCs of the global proteomic data clearly separated the tumor from normal samples, and no obvious batch effect was observed

among the 33 TMT batches. In addition, the quality of proteomics data was examined based on protein complex correlation analysis

and co-expression network-based function prediction (Wang et al., 2017), and compared with RNA-Seq data. The analysis was per-

formed using OmicsEV (https://github.com/bzhanglab/OmicsEV/).

Differential Expression Analysis

The proteomic data filtered with no missing values (n = 6,478 genes) and with imputation values (n = 8,958 genes) were both used as

input data for differential expression analysis. Samr R package (Li and Tibshirani, 2013) was used to identify proteins that were differ-

entially expressed in tumor and non-tumor liver tissues using paired two-class of Samrwith 1,000 permutations and an FDR threshold

of 0.05. For proteomic data with no missing values, a total of 1,274 proteins were identified by differential analysis with a fold change

> 1.5.

The parameters for differential analysis of RNA-seq data were as follows: the upper-quartile normalized RSEM counts data (n =

19,860 genes) were used as input data for differential expression analysis. Samr R package was used to identify proteins that

were differentially expressed between tumor and non-tumor liver tissues using paired two-class of Samr with 1,000 permutations

and an FDR threshold of 0.05. A total of 3,697 genes were thus identified by differential analysis with a fold change > 2.

mRNA, proteomic and phosphoproteomic subgrouping analysis
Consensus Clustering for mRNA and Proteomic Data

We chose differentially expressed proteins with no missing values for subgrouping. 1,274 proteins expressed differentially between

tumor and non-tumor liver tissues were first selected by SAM (significance analysis of microarray) with statistically significance (FDR

q value < 0.05 and fold change > 1.5). Among them, 1,126 proteins (88.4%) were also among the top 50%most varied proteins within

tumors (Figure S6B). K-means consensus clustering was then performed on the selected proteins to generate subgroups.

Consensus clustering was implemented on these 1,274 differentially expressed proteins using the ConsensusClusterPlus R package

(Wilkerson and Hayes, 2010), and the following detail settings were used for clustering: number of repetitions = 1,000 bootstraps;

pItem = 0.8 (resampling 80% of any sample); pFeature = 0.8 (resampling 80% of any protein); and k-means clustering with up to

6 clusters. The number of clustering was determined by three factors, the average pairwise consensus matrix within consensus clus-

ters, the delta plot of the relative change in the area under the cumulative distribution function (CDF) curve, and the average silhouette

distance for consensus clusters. We selected a 3-cluster as the best solution for the consensus matrix with k = 3 or k = 4 deemed to

be a cleanest separation among clusters, but the consensus CDF and delta plot exhibited that there was little increase in area for k = 3

compared to k = 4. Moreover, the average silhouette distance for k = 3 was larger than k = 4 or k = 5 and did not have significant

negative values. Based on the evidence above, the HCC proteomic data were clustered into 3 groups (Figure S6A). As summarized

in Figure 3A, the clustering analysis of the tumors (vertical column) by protein abundance (horizontal rows) divided all tumors into

three proteomic subgroups defined by silhouette analyses (Figure S6A). The decision was finally attributed to (i) the average silhou-

ette distance for 3 clusters (0.79) and (ii) no silhouette widths with significant negative values observed for 3 clusters.

A total of 3,697 genes identified by differential RNA-seq data analysis were performed with the following parameters used for

consensus clustering: number of repetitions = 1,000 bootstraps; pItem = 0.8 (resampling 80%of any sample); pFeature = 0.8 (resam-

pling 80% of any genes); and k-means clustering with up to 6 clusters, and 3-cluster as the optimized solution for clustering.

Comparison of the CHCC-HBV Subgrouping with Previous HCC Subgroupings

Five reported HCC gene expression signatures, including Chiang HCC signature (Chiang et al., 2008), Late TGF-b responsive genes

signature (Coulouarn et al., 2008), Hoshida sub-classes (S1, S2, and S3) signatures (Hoshida et al., 2009), WNT-pathway activation

signatures (Lachenmayer et al., 2012), and NCI proliferation (NCIP) signature (Lee et al., 2004), were collected for comparison.

Different from those previous HCC classifications, our three subgroups were based on HBV-infected HCC patients at proteomic
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level. For the patient stratification, consensus clustering was also employed on HCC protein abundance with previously defined

signature genes, and the results showed the concordance with previous gene expression-based classifications.

Association between Proteomic Subgroup and Clinical Outcome

We performed survival analysis of patient stratification in different subgroups from Consensus Clustering. The Log-rank test was

used to compare survival outcomes among these three subgroups generated by proteomics and mRNA-based clustering, respec-

tively, and Kaplan-Meier survival curves were plotted by R ggsurvplot package.

Defining Phosphoproteomic Clusters in Pathway Level

The phosphorylation sites from the same phosphoproteins were collapsed by calculating themedian ratio, and then samples with any

missing values in phosphoprotein were excluded from subsequent analysis, resulting in a clean dataset of 3,836 phosphoproteins. In

addition, a total of 859 differentially expressed phosphoproteins were identified by SAM analysis with statistical significance (FDR q

value < 0.05 and fold change > 1.5). The phosphoprotein dataset of these differential proteins across tumor samples was subjected to

single-sample gene set enrichment (ssGSEA) analysis (GSVA R package, http://www.bioconductor.org/packages/release/bioc/

html/GSVA.html) (Hänzelmann et al., 2013) to obtain enrichment scores over MSigDB c2 (canonical gene sets, https://software.

broadinstitute.org/gsea/msigdb/in dex.jsp) pathway database with at least 10 overlapping genes. Next, the pathway-mapped phos-

phoprotein data were clustered into 3 robust groups, using k-means consensus clustering and evaluated by the consensus CDF,

delta area plot as well as silhouette plots, which was consistent with proteomics stratification.

Multi-omics Data Analysis
mRNA-Protein Correlation

Spearman correlation coefficient was applied tomeasure the correlation betweenmRNA expression and protein abundance for each

gene-protein pair across all 159 CHCC-HBV samples. In addition, P value corresponding to the correlation coefficient was computed

and adjusted by the FDR correction. Significance of the correlation pair was determined, based on an adjustedP value cut-off of 0.01.

A total of 6,203mRNA-protein matched genes were calculated with amedian Spearman correlation of r = 0.54. Moreover, mRNA and

protein were positively correlated for most (98.6%) mRNA-protein pairs, and 90.3% showed significant positive correlation (multiple-

test adjusted P value < 0.01).

Joint Random Forest (JRF) Co-expression Network Analysis

Co-expression network construction analysis was performed to study the interaction patterns among genes and proteins, based on

the global proteomic and RNA-seq data across the 159 CHCC-HBV samples. The top 15% expressed mRNAs and proteins with the

largest interquartile range were chosen respectively, and generated into two 6293 159 data matrices in both sets, in which one was

for gene expression and the other was for protein expression. Joint Random Forest (JRF) method was utilized to join two co-expres-

sion networks and enable information to be shared both in proteomic and transcriptomic data leading to give an accurate estimation.

The settings used for JRFwere as following: the total number of trees was set to 1,000, the number of variables sampled at each node

was set to sqrt (p-1) with p = 629. FDR of importance scores was calculated with 400 permutations. Genes in both existingmRNA and

protein co-expression network edges were mapped to pathways and imported into Cytoscape (https://cytoscape.org/) to create co-

expression networks.

Effects of Copy Number Alternations

SCNAs affecting mRNA and protein/ phosphoprotein abundance in either ‘‘cis’’ (within the same aberrant locus) or ‘‘trans’’ (remote

locus) mode were visualized by multiOmicsViz (R package). Spearman’s correlation coefficients and associated multiple-test

adjusted P values were calculated for all CNA-mRNA pairs for 18,054 genes, resulting in CNA-protein pairs for 8,284 genes and

CNA-phosphoprotein pairs for 6,104 genes, respectively.

Patient Specific Database Construction and Variant Peptide Identification

For each of the 159 CHCC-HBV patients analyzed, DNA-variants (somatic/germline) by WES and RNA-variants by RNA-seq were

obtained with the method described above. RNA junction files were generated by aligning clean reads to the highly reliable human

reference genome (version hg19) using TopHat (version 2.1.1, http://ccb.jhu.edu/software/tophat/index.shtml) with parameters of

–g 1,–bowtie2 (version 2.3.3.3), -M, -x 1, and–fusion-search settings. The proteogenomic database tool CustomProDB (Wang and

Zhang, 2013) was used to incorporate the germline and somatic SNVs, indels, and RNA-seq predicted junctions into a searchable

protein specific database with default parameters for variant peptide identification. First, the identified MS2 spectra were removed

from the original raw files using home-developed R script and the filtered spectra were transformed into mzxml files. For each set of

TMT files, the mzxml files were searched against their corresponding customized databases. The database searching parameters

were almost identical to those described above except that Oxidized methionine and protein N-term acetylation were set as variable

modifications and the data were filtered at 1% PSM FDR.

Differential Analysis and Pathway Enrichment Analysis

Differential analysis of CHCC-HBV samples with different phenotypes was analyzed with t test, including differential proteins in tu-

mors with versus without tumor thrombus, differential proteins, and phosphorylation sites in tumors carrying mutated versus non-

mutated TP53 and CTNNB1, or differential mRNAs, proteins and phosphorylation sites in tumors with high or low expression of

PYCR2 and ADH1A. Geneswith FDR < 0.1 and a fold change > 1.5 or other thresholds were visualized by ComplexHeatmap (R pack-

age). Pathway enrichment analysis of the significant genes was performed using clusterProfiler (R package). Pathways with an FDR

threshold of 0.05 were regarded to be significantly regulated. The proteome and phosphoproteome samples with < 50% missing
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values were imputed (see missing value imputation section above) and used for subsequent analyses except for the subgrouping

analysis (with only no missing values).

Gene Set Enrichment Analysis (GSEA)

GSEA was performed by the GSEA software (http://software.broadinstitute.org/gsea/index.jsp) (Subramanian et al., 2005). Gene

sets used in this article were c2.cp.kegg.v6.2.symbols.gmt downloaded from the Molecular Signatures Database (MSigDB, http://

software.broadinstitute.org/gsea/msigdb/index.jsp).

Functional enrichment analysis of multi-omics level data in three subgroups

To further analyze biological characteristics of three subgroups, we performed single-sample gene set enrichment (ssGSEA) analysis

to identify the pathway alterations that underlie the HCC subgroups. Gene expression data of mRNA, proteome and phosphopro-

teome levels across 159 tumor samples were used to achieve enrichment scores over MSigDB database v.6.2 with at least 10 over-

lapping genes and the R/Bioconductor package GSVA. The significance of the pathway enrichment scores (PES) over the three

subgroupswas estimated by linearmodel andmoderated with the F-statistic using the R/Bioconductor package limma. The resulting

significant PES among three subgroups were corrected by the Benjamini–Hochberg method, which used an adjusted P value cut-off

of 0.05.

Prognostic Biomarker Analysis for CHCC-HBV
Cox proportional hazard model for overall survival data was implemented to identify biomarkers for HCC prognosis. We stratified the

CHCC-HBV patients into two groups and used the median as cutoff to define high and low protein expression. Kaplan-Meier curve

(Log-rank test) was used to visualize survival difference. The filter criteria for survival analysis were as follows: tumor versus non-tu-

mor with t testP value < 0.0001 and fold change > 2, correlation betweenmRNA and protein expression > 0.5, variance in tumor > 0.5,

Log-rank P value < 0.0001, and HR > 1.8 for upregulated or < 0.55 for downregulated proteins.

We first used TMAs to validate the proteins’ abundance by immunofluorescence staining in the same CHCC-HBV cohort with 155

samples as discovery set (leaving 4 patients without high-quality paraffin tissue blocks). Next, a second cohort consisting of 243HCC

samples was used as an independent validation.

Tissue MicroArray (TMA) Experiment
TMA Construction

TMAs were constructed using 155 paired tumor and non-tumor liver tissues from the CHCC-HBV cohort using the method as we

previously described (Gao et al., 2012). In brief, all cases were histologically inspected by H&E staining and representative areas

were pre-marked on the paraffin blocks, away from necrotic and hemorrhagic regions. Duplicates of 1.5-mm-diameter cylinders

from two different areas, tumor center and non-tumor liver, were included in each case, along with different controls, to ensure repro-

ducibility and homogeneous staining of the slides.

For validation, the TMAs from an independent cohort consisting of 243 HCC patients were used. These 243 HCC patients received

curative surgery from January to December 2007 at Zhongshan Hospital and received no prior anticancer treatments. In this cohort,

the median age was 51, with 97.9% HBV-positive. 134, 20 and 89 patients were classified as TNM stage I, II and III-IVA respectively.

Detailed clinicopathologic features were summarized in Tables S7.

Multiplexed Immunostaining

Multiplex staining of ADH1A (clone EPR4439, No. ab108203 Abcam) and PYCR2 (Polyclonal, No. 17146-1-AP, Protein Tech) was

performed by the Vectra Automated Quantitative Pathology Imaging and Analysis platform through multispectral imaging system

and inFormTM image analysis software (PerkinElmer). Slides were first deparaffinized and rehydrated, followed bymicrowave antigen

retrieval (pH = 9.0, ADI-950-274-0500, ENZO). After blocking endogenous peroxidase and nonspecific binding sites (ZAE-ICT-6295-

L100, ENZO), primary Abs and secondary HRP-conjugated polymers (MPX-2402, 5692 Vectorlabs) were applied. Each HRP-conju-

gated polymer covalently bound with a distinct fluorophore using tyramide signal amplification (Opal 7-color Fluorophore TSA plus

Fluorescence Kit (NEL 797001KT; PerkinElmer)). This covalent reaction was followed by additional antigen retrieval (pH = 6.0, ADI-

950-270-0500, ENZO) to remove background signal before next step. The process was conducted for the following antibodies/fluo-

rescent dyes, in order: anti-PYCR2/Opal570, anti-ADH1A/Opal520. After two sequential reactions, slides were counterstained with

DAPI (D9542, Sigma) and mounted with fluorescence mounting medium (S3023, Dako). Following similar procedures, the staining of

SLC10A1 (Polyclonal, No. Ab131084, Abcam) was performed on TMAs.

Multispectral Imaging, Spectral Unmixing and Analysis

A workflow enabling simultaneous evaluation of multiple biomarkers on TMAs was established. Briefly, multiplex stained TMA slides

were scanned using the Vectra multispectral automatedmicroscope (PerkinElmer), where original images comprising four combined

200 multispectral image cubes. Multispectral images for each TMA core was created by stitching images captured every 10 nm

across the range of five filter cubes comprising DAPI (440-680 nm), FITC (520 nm-680 nm), Cy3 (570-690 nm), Texas Red (580–

700 nm) and Cy5 (670–720 nm). A spectral library was produced by the supervisedmachine learning algorithmswithin Inform (version

2.4, PerkinElmer). Individual components were separated from each multispectral image by this spectral library (spectral unmixing).

The spectrally unmixed and segmented images were subjected to a distinctive phenotyping algorithm for identification of each DAPI-

stained cell according to each fluorophore expression and nuclear/cell morphological features. For each marker (PYCR2/ADH1A/

SLC10A1), the cutoff for positivity was decided according to the staining pattern and intensities on all images. All quantifications
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were evaluated blinded to patient clinical outcomes. The modified H-scores for PYCR2, ADH1A and SLC10A1 (percentage of tumor

cells with positive staining multiplied by the average intensity of positive staining) were divided into two equally sized groups (median

as cutoff).

Drug Target Analysis
Drug targets either approved by FDA or under clinical trials were retrieved from Drugbank database (version 5.1.1, released 2018-

07-03) (https://www.drugbank.ca/). Target proteins that were upregulated in tumor compared to non-tumor with potential curative

drugs (antagonist and inhibitor) were chosen.

Functional Experiments
Plasmids

The Flag-tagged coding sequence of human ALDOA wild-type or the relevant ALDOA-S36E mutant; human CTNNB1 delta N-termi-

nal (DN-CTNNB1) were cloned into the lentiviral vector pLEX-MCS-CMV-puro (Addgene, USA) to generate corresponding expres-

sion plasmids.

Construction of Stable Cell Lines

pLEX-MCS-CMV-puro lentiviral virus packaging and subsequent generation of stable cell lines by infection were performed accord-

ing to the protocol previously described (Boehm et al., 2005).

Cell Proliferation Assay

For cell growth assays, HepG2 cells were plated in 96-well plate (2 3 103 cells/well). CCK-8 solution (C0039, Beyotime Biotech-

nology) was added to the wells for 2 hr and the absorbance was measured at 450 nm.

RNA Interference

The siRNAs were synthesized by Biotend Company. All siRNA transfections were performed with X-tremeGENE siRNA Transfection

Reagent (Roche) at 50 nM final concentration according to the manufacturer’s protocol. For ALDOA RNAi experiment, three different

ALDOA siRNA were equally mixed together to transfect into indicated cells at 50 nM final concentration. The siRNA transfected cells

were harvested for qPCR assay 48 hr after transfection. Oligonucleotide sequences are as following:

siALDOA-1 Sense: 50-GCGGUGUUGUGGGCAUCAAdTdT-30, Antisense: 50-UUGAUGCCCACAACACCGCdTdT-30

siALDOA-2 Sense: 50-GGCGUUGUGUGCUGAAGAUdTdT-30, Antisense: 50-AUCUUCAGCACACAACGCCdTdT-30

siALDOA-3 Sense: 50-GGAGGAGUAUGUCAAGCGAdTdT-30, Antisense: 50-UCGCUUGACAUACUCCUCCdTdT-30

Western Blot Analysis

Cells were lysed in EBC lysis buffer (50 mM Tris HCl, pH 8.0, 120 mM NaCl, 0.5% Nonidet P-40) supplemented with protease inhib-

itors (Selleck Chemicals) and phosphatase inhibitors (Selleck Chemicals). 30 mg total proteins were separated by 10% SDS-PAGE

gel and blotted with indicated primary antibodies. Primary antibodies used for western blot analysis were as follows: anti-Flag

(1:2000; F7425; Sigma Aldrich), anti-CTNNB1 (1:1000; A11932; ABclonal), anti-Tubulin (1:5000; sc-134237; Santa Cruz Biotech-

nology). Peroxidase-labeled anti-mouse (1:5000; P0217; DAKO) or anti-rabbit (1:5000; P0260; DAKO) IgG secondary antibody

were used. The western blot gel image was obtained with anMinichemi 610 chemiluminescent imager (Sagecreation, Beijing, China).

Real-time Quantitative PCR

Total RNA was extracted from cells using TRIzol Reagent (Invitrogen, Thermo Fisher Scientific) according to the manufacturer’s in-

structions. Total RNAwas reverse transcribed into first-strand cDNA using the ABScript II RTMasterMix for qPCRKit (ABclonal). The

cDNAs were then used for real-time PCR (qPCR) on a CFX96 Touch Real-Time quantitative PCR System (Bio-Rad) using TB Green�
Premix Ex Taq II (Tli RNaseH Plus; Takara). b-actin was served as the internal control. The relative quantification of gene expression

was analyzed by using the 2�DDCt method. The primers used for qPCR analyses are as following:

ALDOA Forward: 50-CAGGGACAAATGGCGAGACTA-30, Reverse: 50-GGGGTGTGTTCCCCAATCTT-30

b-actin Forward: 50-AGAGCTACGAGCTGCCTGAC-30, Reverse:50-AGCACTGTGTTGGCGTACAG-30

Assessment of Cellular Metabolism

Cellular respiration of HepG2 cells was measured by a Seahorse XF24 analyzer (Seahorse Bioscience, North Billerica, MA). 1 3 105

cells/well were seeded in Seahorse XF 24-well culture plates (Bucher Biotech AG, Basel, Switzerland) in growth medium and incu-

bated at 37�C/5% CO2 overnight. Cells were changed to the XF Glycolysis Stress Test Assay Medium (Sigma-Aldrich; D5030) and

placed in a 37�C non-CO2 incubator for 1 hr prior to the assay after they were washed two times with the same assay medium. An

assay template was created on the XF Controller and allowed to calibrate and equilibrate, which consisted of 3-minute mix, 2-minute

wait, and 3-minute measure cycles. Three basal rate measurements were conducted prior to the first injection, and then glucose

(10mM), oligomycin (1 mM), and 2-deoxy-d-glucose (2-DG, 100mM) were injected into each well at the indicated time. After injection,

the oxygen consumption rate and extracellular acidification rate were closely monitored until the rates stabilized, and then the exper-

iment was terminated. After each measurement, the living cell number of each well was calculated using a EnSight Multimode Plate

Reader (PerkinElmer, Germany) after Hochest/PI double staining for further normalization.
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Xenograft Tumorigenesis Assay

5-week-old male BALB/c nude mice were purchased from the SLAC Company (Shanghai, China) and maintained in pathogen-free

conditions. All animals were acclimated for 1week before experiments. 13 107 HepG2 cells (wild-type or overexpressedwith ALDOA

or S36E mutant) in 100 mL PBS were subcutaneously inoculated at the flanks of randomly grouped (6 mice per group) nude mice.

Tumor sizes were measured every 3 days with a caliper and tumor volumes were calculated by the formula: volume = (width)2 3

length3 0.52. All mice were euthanized and tumors were harvested 8 weeks after inoculation, followed by photography. All animals

received human care and all animal experiments were performed in accordance with the guidelines of the Institutional Animal Care

and Use Committee of Shanghai Institutes for Biological Sciences.

QUANTIFICATION AND STATISTICAL ANALYSIS

Quantification methods and statistical analysis methods for single-omic and multi-omic analyses were mainly described and refer-

enced in the respective Method Details subsections.

Additionally, standard statistical tests were used to analyze the clinical data, including but not limited to Student’s t test, Chi-square

test, Fisher’s exact test, Kruskal-Wallis test, Log-rank test. For categorical variables versus categorical variables, Fisher’s exact test

was used in a 23 2 table, otherwise Chi-square test was used; for categorical variables versus continuous variables, Kruskal-Wallis

test was used to test if any of the differences between the subgroupswere statistically significant; and for continuous variables versus

continuous variables, Spearman correlation was used. All statistical tests were two-sided, and statistical significance was consid-

ered when P value < 0.05. To account for multiple-testing, the P values were adjusted using the Benjamini-Hochberg FDR correction.

Kaplan–Meier plots (Log-rank test) were used to describe overall survival. Variables associated with overall survival were identified

using univariate Cox proportional hazards regression models. Significant factors in univariate analysis were further subjected to a

multivariate Cox regression analysis in a forward LR manner. All the analyses of clinical data were performed in R (version 3.4.3).

For functional experiments, each was repeated at least three times independently, and results were expressed asmean ± standard

error of the mean (SEM). The statistical significance of differences was determined by two-way ANOVA for CCK8 and Seahorse re-

sults. Statistical analysis was performed using GraphPad Prism (version 5.01).

DATA AND CODE AVAILABILITY

The data of WES, transcriptome sequencing, proteome, and phosphoproteome generated in this study can be viewed in NODE

(https://www.biosino.org/node) by pasting the accession (OEP000321) into the text search box or through the URL: https://www.

biosino.org/node/project/detail/OEP000321.

Softwares used for single-omic and multi-omic analyses were described and referenced in the respective Method Details subsec-

tions and listed in the Key Resources Table.
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Supplemental Figures

Figure S1. The Workflow of the CHCC-HBV Proteogenomic Study, Related to STAR Methods

Paired tumor and adjacent non-tumor liver tissues from a consecutive cohort of 316 patients were obtained for WES (blood also included), RNA-seq, proteomics,

and phosphoproteomics analyses. The tumor purities were assessed by Hematoxylin-Eosin (HE) staining. The sample filtering criteria include 1) successful

extraction and no obvious degradation in DNA, RNA and protein and 2) no tumor cells in adjacent liver tissue. Eventually, complete data of WES, RNA-seq,

proteome, and phosphoproteome were collected for the 159 paired samples and used in the following proteogenomic analysis. RNA-seq data of 4 non-tumor

liver samples (N127, N431, N777 and N813) were excluded due to unqualified RNA-seq data.



Figure S2. Quality Assessments for WES, RNA-Seq, and MS Data, Related to STAR Methods

(A) Sequencing depths of WES for tumors and adjacent non-tumor liver tissues.

(B) QC passed reads in RNA-seq for tumors and adjacent non-tumor liver tissues.

(C) Venn diagram showing comparison of somatic alternations called using controls from matched blood samples versus adjacent non-tumor liver tissues from

the 108 patients with both controls available.

(D) The TMT 11-plex proteomic and phosphoproteomic workflow. A total of 330 tumor and adjacent non-tumor liver tissues from 165 patients were subjected for

dry pulverization, protein extraction, trypsin digestion and analyzed in 33 TMT 11-plex experiments with 5 paired tumor and adjacent non-tumor tissues and the

internal reference sample. The reference sample contained 50 pairs of tumor and adjacent non-tumor liver samples mixed in equal protein amount. The labeled

(legend continued on next page)



peptides were combined for high pH RP fractionation. 5% of each fraction was used for proteome analysis and 95%was used for phosphopeptides enrichment

and analysis. MaxQuant software and human Swiss-Prot protein database were used for database searching. The proteome dataset resulted in 202,690 peptide

sequences identified and quantified from 8,679,925 MS/MS spectra. MS data from the 159 paired samples were used for the following data analysis.

(E) The quantification repeatability of longitudinal benchmark samples showing the robust and accurate proteome/phosphoproteome platform (To take the ratios

of 126 to 127N as an example, Pearson’s correlation coefficients, 0.86-0.93).

(F) Hierarchical clustering analysis for the ratios of tumor to adjacent non-tumor liver sample (126/127N, 127C/128N, 128C/129N, 129C/130N, 130C/131) in

benchmark samples. The data from the same patient samples can be clustered into the same groups, suggesting robust and accurate proteome/phospho-

proteome quantification platform.

(G) Summary of proteomic datasets at different levels. 10,783 proteins were quantified with at least 2 unique peptides. Four HBV proteins with R 2 unique

peptides were identified.

(H) Summary of phosphoproteomic datasets at different levels. 59,746 highly reliable Class I phosphosites (i.e., a localization probability filter >0.75 in MaxQuant)

on 9,224 phosphoproteins were quantified, consisting of 50,699 pho-Serine, 7,758 pho-Threonine and 1,289 pho-tyrosine.

(I) The overlap of proteins and phosphoproteins. 7,569 proteins were identified with 55,109 highly reliable Class I phosphosites (92% of all Class I sites). 3,214

proteins were identified with only their non-phosphorylated forms (29.8% of all proteins). 1,655 proteins were identified with only their phosphorylated forms

(17.9% of all phosphoproteins).

(J) The unimodal distributions of the ratios of sample to internal reference (Hartigans’ dip test P value > 0.05) suggests no obvious degradation in tumor and

adjacent non-tumor liver samples.

(K) Principal-component analysis clearly separated the tumor and normal samples based on the 33 TMT global data, and no batch effects were observed.

(L) Quality assessment of proteomic and transcriptomic data based on protein complex correlation analysis.

(M) Comparison of gene function prediction accuracy using co-expression networks based on mRNA and protein profiles for the 160 KEGG pathways. Network-

based gene function prediction was based on the random walk-based algorithm. KEGG pathways with at least 20 quantified genes were compared. Prediction

performance was evaluated using five-fold cross validation and quantified based on the area under the receiver operating characteristic curve (AUC). Dotted lines

indicate 10% increase or decrease of prediction performance. Both protein complex correlation analysis (L) and co-expression network-based function pre-

diction analysis (M) indicated that proteomic data were superior to transcriptomics for accurately predicting gene function.



(legend on next page)



Figure S3. The Overall Correlation, Co-clustering, and Co-expression Network Analyses between mRNA and Protein Data, Related to STAR

Methods

(A) Top panel: mRNA and protein were positively correlated for most (98.6%)mRNA-protein pairs across the 159 samples, and 90.3% showed significant positive

correlation (multiple-test adjusted p < 0.01) with a median Spearman’s correlation coefficient of 0.54 in 6,203 mRNA-protein pairs.

Bottom panel: Different GSEA enrichment pathways showed significantly different levels of correlation. Metabolic pathways of cytochrome p450, bile acid, bile

salt, and butanoate displayed high mRNA-protein correlation, while respiratory electron transport, RNA polymerase and assembly of the pre-replicative complex

were poorly correlated. The mean correlation was shown in parentheses, followed by Benjamini-Hochberg adjusted P values calculated by using a Kolmogorov–

Smirnov test following the names from MSigDB (the Molecular Signature Database). Blue bars indicate positive correlations, and yellow ones indicate negative

correlations. Individual proteins in each pathway (represented as bars on the x axis) were sorted by correlation values from low to high.

(B) Co-expression networks of protein and mRNA data respectively, based on Joint Random Forest (JRF) method.



(legend on next page)



Figure S4. The Mutational Signature Analyses, Direct Effects of Genomic Alterations on Protein Level, and Analysis of AA Mutational

Signature in CHCC-HBV, Related to Figure 1

(A-B) Principal-component analysis of the 96 substitution patterns in the exonic regions by comparing CHCC-HBV cohort with TCGA-HBV subgroup (A) or TCGA-

HCV subgroup (B) (Wilks test).

(C-D) Overlap of protein coding single amino acid variants (C) and RNA splice junctions (D) not present in UCSC hg19 RefSeq (Release 92) detected by WES,

RNA-seq, and LC-MS/MS. Proportions of novel variants are noted.

(E) Three peptides carrying mutations with AA signature are validated by mass spectrometry. The MS/MS spectrums and mutated amino acids are manually

validated.

(F) Association of AA signature with clinicopathologic andmutational features. Mutations in splicing sites and frameshift Indels are calculated by dividingmutation

counts in each sample. Statistical test methods: tumor thrombus, Fisher’s exact test; ALB level, Wilcoxon test; frameshift Indels, Fisher’s exact test; BCLC stage,

Fisher’s exact test; splicing-site mutations, Wilcoxon test.



Figure S5. Profiles of Copy-Number Alterations and Correlations of CNA to Phosphoprotein Level in CHCC-HBV Cohort, Related to Figure 2

(A) Genome-wide focal amplification.

(B) Heatmap of the CNAs of 159 HCC tumor samples: Red and blue represents copy gain and loss, respectively, in units of log2 (tumor/adjacent non-tumor). It is

indicated that 4q and 16q are predominantly co-deleted across the cohort as showed by asterisks. The x axis represents the 159 tumor samples.

(C) Genome-wide focal deletions. Chromosomal locations of peaks of significantly recurring focal amplifications (red) and deletions (blue) were filtered by FDRs.

Peaks were annotated with candidate driver oncogenes or tumor suppressors by Cytoband (5p15.33 (TERT), 11q13.3 (CCND1), 11q24.1 (FGF19), 12q14.1

(CDK4), 3p25.3 (VHL), 9p21.3 (CDKN2A/CDKN2B), 13q14.2 (RB1), 16p13.3 (AXIN1), 17p13.1 (TP53).

(D) Significant positive (red) and negative (blue) correlations between CNA and phosphoprotein are indicated (multiple-test adjusted p < 0.01, Spearman’s

correlation). CNA cis effects appear as a red diagonal line, CNA trans effects as vertical stripes. CNA regions exhibiting the most trans associations at the

phosphoprotein level are found on chromosomes 1q, 4q, 16 and 21q. (FDR < 0.01).

(E) Genes with CNA cis effects (adjusted P value < 0.01, Spearman’s correlation) among mRNA, protein, and phosphoprotein levels.



Figure S6. Consensus Clustering for Proteomics and Phosphoproteomics Data in CHCC-HBV Cohort, Related to Figure 3

(A) Subgroups are identified based on proteomic data of CHCC-HBV cohort (n = 159) by K-means consensus clustering upon their abundance (STARMethods). k

was tested from 2 to 5 and consensus clustering was based on 1,000 resampled datasets. Consensus matrices, as well as consensus cumulative distribution

function (CDF) plot, delta area (change in CDF area) plot and silhouette plots (k = 3&4) are shown.

(B) The overlap between top 50% most variable proteins and differentially expressed proteins with FC > 1.5 & q value < 0.05.

(C) Comparisons of the CHCC-HBV proteomic subgrouping to the subgrouping resulted from previously reported standards.

(D) Kaplan-Meier curves for overall survival based on mRNA subgroups (Log-rank test).

(E) Prognostic difference of the discordant patients (n = 36) based on protein subgroup or mRNA subgroup.

(legend continued on next page)



(F) Phosphoproteomic subgroups (the top row) are identified (n = 159) by K-means consensus clustering upon pathway ssGSEA scores (STAR Methods). The

resulted samples are also labeled by their proteomic subgroups (the second row). The heatmap with column representing samples and rows representing

pathways was plotted. Color of each cell indicates Z score (log2 of relative abundance scaled by ssGSEA score’ SD) in that sample.

(G) The consensus matrix, consensus CDF and delta area (change in CDF area) plots, as well as the silhouette plots, were shown.

(H) Kaplan-Meier curves for overall survival based on the three phospho-subgroups (Log-rank test).



Figure S7. HCC Relevant Genes, Clinical Biomarkers, and Potential Drug Targets, Related to Figure 3

(A) Heatmap of 9 HCC relevant genes and their associations with the subgroups across somatic mutation, CNA, RNA-seq, proteome, and phosphoproteome.

(B) Heatmap of clinically relevant HCC biomarkers in tumor compared to non-tumor liver tissues.

(C) Heatmap of potential drug targets based on proteomic data and bar plot showing the expression ratio among proteomic subgroups. The heatmaps with

column representing samples and rows representing proteins were plotted. Color of each cell indicates Z score (log2 of relative abundance scaled by score’ SD) in

each sample.
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(Cell 179, 561–577.e1–e22; October 3, 2019)

It has come to our attention that a recent and important reference concerning proteomic analysis of hepatocellular carcinoma was

inadvertently omitted during the preparation of our paper. The missing reference is: ‘‘Jiang, Y., Sun, A., Zhao, Y., Ying, W, Sun, H,

Yang, X, Xing, B., Sun, W., Ren, L., Hu, B., et al. (2019). Proteomics identifies new therapeutic targets of early-stage hepatocellular

carcinoma. Nature, 567, 257–261.’’ In the corrected version of this article, this key citation is now referenced in the Introduction.

Additionally, an institutional affiliation of our paper was mis-typed during the submission of final manuscript. It should be ‘‘4State Key

Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology,

Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China.’’

We apologize for any confusion and inconvenience that these errors may have caused.
1240 Cell 179, 1240, November 14, 2019 ª 2019 The Author(s). Published by Elsevier Inc.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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